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Équations différentielles linéaires d’ordre 1

1 Introduction

Définition 1.

Une équation différentielle est une équation dont l’inconnue est une fonction y et dans laquelle apparaissent
des dérivées de la fonction y.

Exemple 2.

Les équations y′(t) + y(t) = et et y′′(x) + y(x) = 0 sont des équations différentielles.

Définition 3.

On appelle équation différentielle linéaire d’ordre 1 à coefficients constants une équation de la forme :

ay′(t) + by(t) = g(t)

où a ∈ R
∗ et b ∈ R sont les coefficients de l’équation,

et g(t) (qui peut être une constante) est appelé le second membre de l’équation.

On appelle solution de l’équation, toute fonction (dérivable) qui vérifie l’égalité.

Remarque.

On s’intéressera dans ce cours à la résolution d’équation différentielle d’ordre 1 (ne faisant intervenir que la
dérivée d’ordre 1), mais il existe des équations différentielles d’ordre 2 ou plus.

Exemple 4.

1. La fonction h(t) =
1

2
et est solution de y′(t) + y(t) = et.

2. La fonction g(x) = cos(x) est solution de y′′(x) + y(x) = 0.

Définition 5.

On dit qu’une équation différentielle est homogène lorsque son second membre est nul.

Exemple 6.

1. L’équation différentielle y′(t)− y(t) = 0 est homogène.

2. L’équation différentielle y′(t)− y(t) = e3t n’est pas homogène.

Exercice 1

La fonction h(x) = x+
x3

2
est-elle solution de l’équation différentielle y′(x)−

y(x)

x
= x2 sur ]0,+∞[ ?

Remarque.

Une équation différentielle peut avoir plusieurs solutions. Lorsqu’on a trouvé une des solutions d’une équation
différentielle on appelle généralement celle-ci : solution particulière et on la note yp.

2 Équations différentielles du premier ordre à coefficients constants

Nous nous intéressons dans cette section aux équations différentielles à coefficients constants du type :

τy′(t) + y(t) = g(t) (1)

où τ ∈ R
⋆ est une constante donnée, g : I ⊂ R → R est une fonction donnée et l’inconnue est la fonction y

que l’on cherche à déterminer.
Cette écriture (avec le coefficient de y qui vaut 1) est appelée forme canonique de l’équation.
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2.1 Équation homogène 2

2.1 Résolution de l’équation homogène associée

Proposition 7. L’équation homogène associée à l’équation différentielle (1) est :

τy′(t) + y(t) = 0 (2)

Les solutions de l’équation homogène (2) sont les fonctions de la forme

yH(t) = Ce
−

t

τ ; ∀C ∈ R

Remarque. Cela signifie que pour toute constante C ∈ R, y(t) = Ce
−

t

τ est solution de l’équation homogène (2)

et que toute solution de l’équation homogène (2) est de la forme Ce
−

t

τ .

Exemple 8.

1. Les solutions de l’équation y′(t) + y(t) = 0 sont de la forme yH(t) = Ce−t ∀C ∈ R

2. Les solutions de l’équation 2y′(t)− 4y(t) = 0 sont de la forme yH(t) = Ce2t ∀C ∈ R

2.2 Résolution de l’équation avec second membre

2.2.1 Ensemble des solutions

Théorème 9. On considère l’équation de la forme

τy′(t) + y(t) = g(t)

On suppose que yp(t) une solution particulière de l’équation.
On note yH une solution de l’équation homogène associée.

Alors, les solutions de l’équation sont les fonctions de la forme

y(t) = yp(t) + yH(t)

Remarque. Cela signifie qu’on obtient toutes les solutions de l’équation (1) en sommant les solutions de l’équa-
tion homogène associée (2) et une solution particulière de l’équation (1).
Ce théorème est vrai dès lors qu’on étudie des équations différentielles linéaires.

Exemple 10.

1. Les solutions de l’équation y′(t) + y(t) = et sont les fonctions de la forme

y(t) =
et

2
+ Ce−t ∀C ∈ R

2. On peut montrer que yp(t) = −
t

2
−

1

4
est une solution particulière de 2y′(t)− 4y(t) = t.

Donc les solutions de l’équation 2y′(t)− 4y(t) = t sont les fonctions de la forme

y(t) = −
t

2
−

1

4
+ Ce2t ∀C ∈ R

Remarque. Pour résoudre une équation différentielle il suffit de connaître une solution particulière !
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2.2 Résolution de l’équation avec second membre 2

2.2.2 Recherche d’une solution particulière

Comment trouver une solution particulière ? On recherche une solution particulière en s’inspirant de la forme
du second membre.

• Si f(t) = a ∈ R (autrement dit, si f est une constante), alors on recherche une solution particulière sous
la forme d’une constante.

Exemple 11.

On considère l’équation différentielle y′(t)+2y(t) = 3. On recherche une solution particulière sous la forme

d’une constante : yp(t) = c. On remplace dans l’équation, on obtient : 2c = 3, on en déduit que c =
3

2
.

La fonction yp(t) =
3

2
est une solution particulière de y′(t) + 2y(t) = 3.

• Si f(t) = P (t) est un polynôme, alors on recherche une solution particulière sous la forme d’un polynôme
de même degré.

Exemple 12.

On considère l’équation différentielle y′(t) + 2y(t) = 2t+ 1. On recherche une solution particulière sous la
forme d’un polynôme de degré 1 : yp(t) = at+ b. On remplace dans l’équation, on obtient :

a + 2at+ 2b = 2t+ 1 ⇔

{

2a = 2
a+ 2b = 1

On en déduit que a = 1 et b = 0.
La fonction yp(t) = t est une solution particulière de y′(t) + 2y(t) = 2t+ 1.

Exemple 13. On considère l’équation différentielle y′(t) + 2y(t) = 2t2 + 1. On recherche une solution
particulière sous la forme d’un polynôme de degré 2 : yp(t) = at2 + bt + c.

• Si f(t) = emt avec m ∈ R, on recherche une solution particulière sous la forme yp(t) = tαemt avec

α =

{

1 si m = −a (c’est-à-dire si emt est solution de l’équation homogène)
0 si m 6= −a

Exemple 14.

On considère l’équation différentielle y′(t) + 2y(t) = e2t. On recherche une solution particulière sous la
forme : yp(t) = Ce2t. On remplace dans l’équation, on obtient :

2Ce2t + 2Ce2t = e2t ⇐⇒ C =
1

4

On en déduit que a =
1

2
et b =

1

8
.

La fonction yp(t) =
e2t

4
est une solution particulière de y′(t) + 2y(t) = e2t.

• Si f(t) = cos(ωt) ou f(t) = sin(ωt) avec ω ∈ R, alors on recherche une solution particulière sous la forme
yp(t) = A cos(ωt) +B sin(ωt) avec A et B deux constantes à déterminer.

Exemple 15.

On considère l’équation différentielle y′(t)+2y(t) = cos(πt). On recherche une solution particulière sous la
forme : yp(t) = A cos(πt)+B sin(πt). On a y′p(t) = −Aπ sin(πt)+Bπ cos(πt). On remplace dans l’équation,
on obtient :

(−Aπ + 2B) sin(πt) + (Bπ + 2A) cos(πt) = cos(πt) ⇔

{

Bπ + 2A = 1
−Aπ + 2B = 0

En résolvant le système, on en déduit que A =
2

π2 + 4
et B =

π

π2 + 4
.

La fonction yp(t) =
2 cos(πt) + π sin(πt)

π2 + 4
est une solution particulière de y′(t) + 2y(t) = cos(πt).
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2.3 Ajout d’une condition initiale3 EQUATION DIFFÉRENTIELLE D’ORDRE 1 À COEFFICIENTS NON CONSTANTS

2.3 Ajout d’une condition initiale

Les équations différentielles que nous avons résolues jusque là ont toujours une infinité de solutions. Ce n’est
plus le cas si on impose la valeur de la solution en un point (par exemple imposer y(2) = 0).

Définition 16.

On appelle condition initiale associée à une équation différentielle le fait d’imposer la valeur de la fonction en
un point.

Théorème 17. Soit f : I ⊂ R → R une fonction continue, a ∈ R, t0 ∈ I et y0 ∈ R. Le système
{

y′(t) + ay(t) = f(t)
y(t0) = y0

admet une unique solution sur I.

Exemple 18.

On s’intéresse aux solutions de l’équation différentielle

y′(t) + 2y(t) = 2t+ 1 (3)

qui vérifient en plus la condition initiale y(0) = 1.

D’après la Proposition 9 et l’Exemple 12, les solutions de l’équation différentielle (3) sont de la forme y(t) =
Ce−2t + t avec C ∈ R.

Cherchons les solutions qui vérifient de plus y(0) = 2 :

y(0) = 2 ⇔ C = 2

On en déduit que le système

{

y′(t) + 2y(t) = 2t+ 1
y(0) = 1

admet une unique solution y(t) = 2e−2t + t.

3 Equation différentielle d’ordre 1 à coefficients non constants

Nous nous intéressons dans cette section aux équations différentielles à coefficients non constants du type :

y′(x) + a(x)y(x) = 0 (4)

où a : I ⊂ R → R est une fonction donnée et l’inconnue est la fonction y que l’on cherche à déterminer.

Proposition 19. L’ensemble des solutions de l’équation homogène (4) est égal à

SH = {Ce−A(x) ; C ∈ R}

où A(x) est une primitive de a(x).

Remarque. Cela signifie que pour toute constante C ∈ R, y(x) = Ce−A(x) est solution de l’équation homo-
gène (4) et que toute solution de l’équation homogène (4) est de la forme Ce−A(x).

Exemple 20. 1. L’ensemble des solutions de l’équation sur ]0,+∞[ de l’équation

y′(x)−
y(x)

x2
= 0

est SH = {Ce−
1

x ; C ∈ R}

2. L’ensemble des solutions de l’équation sur ]0,+∞[ de l’équation

xy′(x) + y(x) = 0

est SH =

{

C

x
; C ∈ R

}
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