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5.3.2 Décalage temporel (Retard) . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.3 Multiplication par an (modulation) . . . . . . . . . . . . . . . . . . . . . 47
5.3.4 Multiplication par n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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Chapitre 1

Révisions sur le calcul intégral

1.1 Propriétés graphiques

Les propriétés suivantes permettent généralement de calculer très rapidement une intégrale,
sans utiliser l’une des méthodes de calcul de la suite du chapitre.

1.1.1 Calcul de surface

Par définition le calcul d’une intégrale correspond à un calcul de surface « orientée ».

• Si f est une fonction positive sur [a, b] alors
∫ b

a
f(t)dt ≥ 0 représente la surface entre la

courbe et l’axe des abscisses.

• Si f est une fonction négative sur [a, b] alors
∫ b

a
f(t)dt ≤ 0 représente (−1) fois la surface

entre la courbe et l’axe des abscisses.

Exemple.

1.

∫ 4

0

3dt = 3× 4 = 12

2.

∫ 0

−2

tdt = −
(
2× 2

2

)
= −2

5



1.1.2 Parité

Théorème.
Soit a un réel positif et soit f une fonction définie sur l’intervalle [−a, a].

• Si f est une fonction impaire alors

∫ a

−a

f(t)dt = 0

• Si f est une fonction paire alors

∫ a

−a

f(t)dt = 2

∫ a

0

f(t)dt

Exemple.

1.

∫ π

−π

cos(t) sin3(t)dt

2.

∫ 3

−3

t3 − 5t+ 1dt

1.1.3 Fonctions périodiques

Théorème.
Soit T un réel positif et soit f une fonction T -périodique. On a alors

∀a ∈ R :

∫ T

0

f(t)dt =

∫ a+T

a

f(t)dt

Autrement dit : le calcul de l’intégrale de f sur une période ne dépend pas de la période
choisie.
On note alors

∫
[T ]

f(t)dt l’intégrale sur une période.

Exemple.

1.

∫ π

0

cos(2t)dt =

∫ π
2

−π
2

cos(2t)dt

2.

∫ 3π

0

cos(2t)dt = 3×
∫ π

0

cos(2t)dt

1.2 Calcul de primitive

C’est la méthode de calcul n◦1 !

On vérifie si la fonction que l’on cherche à intégrer est d’un type connu.
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1.2.1 Formulaire

On renvoie au tableau 1.1 pour un résumé des primitives à connâıtre par coeur. Les tableaux
suivants regroupent les primitives classiques à connâıtre !

f(t) F (t)

tα (α ∈ R, α 6= −1)

1

t

1

tn
(n ∈ N, n 6= 1)

1√
t

f(t) F (t)

u′(t)(u(t))α (α ∈ R, α 6= −1)

u′(t)

u(t)

u′(t)

(u(t))n
(n ∈ N, n 6= 1)

u′(t)√
u(t)

f(t) F (t)

cos(t)

sin(t)

et

1

1 + t2

f(t) F (t)

u′(t) cos(u(t))

u′(t) sin(u(t))

u′(t)eu(t)

u′(t)

1 + (u(t))2

Figure 1.1 – Primitives classiques
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1.2.2 Reconnâıtre
u′(t)

un(t)
et u′(t)un(t) avec u(t) = sin(αt) ou u(t) = cos(αt)

(α ∈ R et n ∈ N)

Pour calculer les fonctions du type (avec α ∈ R et n ∈ N) :

1. cos(αt) sinn(αt)

2. cosn(αt) sin(αt)

3.
cos(αt)

sinn(αt)

4.
sin(αt)

cosn(αt)

Exemple.

1.

∫ π

0

cos(t) sin2(t)dt

2.

∫ π

0

sin(3t) cos(3t)dt

3.

∫ π/2

π/3

cos(t)

sin2(t)
dt

4.

∫ π/3

0

sin(2t)

cos3(2t)
dt

1.2.3 Reconnâıtre
P ′(t)

P n(t)
avec P un polynôme (n ∈ N)

Cette méthode peut s’appliquer lorsqu’on a un quotient de polynômes du type
Q

P n
et que

deg(Q) = deg(P )− 1. Il faut essayer de faire « apparâıtre » P ′ au dénominateur.

Exemple.

1.

∫ 3

2

2

2t− 3
dt 2.

∫ 2

1

t2 + 2

t3 + 6t
dt 3.

∫ 2

1

t + 1

(t2 + 2t)2
dt

1.2.4 Reconnâıtre
P ′(t)

1 + P 2(t)
avec P un polynôme

On utilise en particulier cette technique pour calculer les intégrales de fonctions du type

1

at2 + bt + c
avec ∆ = b2 − 4ac < 0

.
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Exemple.

1.

∫ 1

0

1

t2 + 1
dt

2.

∫ 1

0

1

t2 + 4
dt

3.

∫ 1

0

2

4t2 + 1
dt

4.

∫ 1

0

1

t2 − 2t+ 3
dt

1.3 Fonctions polynômes en sinus et cosinus : Linéarisation

Pour calculer les intégrales de fonctions du type (avec (α, β) ∈R2 et (n,m) ∈ N2) :

cosn(αt) sinm(βt)

" Commencer par vérifier si on connâıt une primitive de ces fonctions (voir la méthode 1.2) !

Remarque. Remarquons que si α = β et si n = 1 ou m = 1, alors on connâıt une primitive
des fonctions du type cos(αt) sinm(αt) et cosn(αt) sin(αt) (voir la méthode 1.2) !

• Méthode :

On linéarise en utilisant les formules d’Euler :

cos(t) =
eit + e−it

2
sin(t) =

eit − e−it

2i

Exemple.

1.

∫ π

0

cos3(t)dt

2.

∫ π

0

cos(3t) sin(t)dt

3.

∫ π

0

cos(4t) cos(2t)dt

1.4 Fractions rationnelles : D.E.S.

Pour calculer les intégrales du type
P (t)

Q(t)
avec P et Q deux polynômes.

" Commencer par vérifier si on connâıt une primitive de ces fonctions (voir la méthode 1.2) !
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Remarque. Pour les fractions rationnelles du type :

1.
P ′(t)

P n(t)
(avec n ∈ N) 2.

P ′(t)

P 2(t) + 1

on applique la méthode 1.2 !

• Méthode :

On effectue la décomposition en éléments simples de
P (t)

Q(t)
.

Exemple.

1.

∫ 3

2

2

t2 − 1
dt

2.

∫ 3

2

t2 + 1

t− 1
dt

3.

∫ 4

3

t+ 2

t3 − 4t2 + 4t
dt

4.

∫ 4

3

t+ 1

(t2 + 1)(t+ 2)
dt

Pour résumer, la DES conduit à intégrer 4 types d’éléments simples :

1er type : la partie entière. C’est un polynôme !

2ème type :
1

t+ α
qui s’intègre en ln |t+ α|

3ème type :
1

(t+ α)n
(avec n > 1) qui s’intègre en

1

1− n

(
1

t+ α

)n−1

4ème type :
At+B

at2 + bt + c
(avec ∆ = b2 − 4ac < 0). On sépare la fonction en deux parties de manière

à faire apparâıtre
u′(t)

u(t)
d’une part et

u′(t)

(u(t))2 + 1
d’autre part.

1.5 Intégration par parties (I.P.P)

Théorème (Formule d’intégration par parties). Soient u et v deux fonctions dérivables
sur un intervalle [a, b] telles que leurs dérivées sont continues sur [a, b]. Alors :

∫ b

a

u(t)v′(t)dt = [u(t)v(t)]ba −
∫ b

a

u′(t)v(t)dt

" Il faut bien choisir quelle fonction on intègre et quelle fonction on dérive de façon à se
ramener à une intégrale plus simple !

10/76



Deuxième année

Semestre 3, 2025-2026

IUT Cachan, GEII 2
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Remarque. Il existe un moyen mnémotechnique pour choisir quelle fonction intégrer et quelle
fonction dériver :

ArctanLogPolyExp Sin

On dérive la fonction la plus à gauche.

Exemple.

1.

∫ 1

0

e2t(t + 1)dt

2.

∫ 3

2

t2 ln(t)dt

3.

∫ 1

0

(2t− 3) cos(πt)dt

1.6 Changement de variable

Théorème (Formule de changement de variable). Soit f une fonction continue et ϕ une
fonction bijective dérivable sur un intervalle [a, b] telle que ϕ′ est continue sur [a, b].
Alors :

∫ b

a

f(ϕ(t))ϕ′(t)dt =

∫ ϕ(b)

ϕ(a)

f(t)dt

Remarque. Lorsqu’on fait un changement de variable dans une intégrale il faut modifier les 3
éléments qui la définisse :
• Les bornes
• L’expression de la fonction
• Le « dt »

Par ailleurs, on veillera à ne jamais avoir une intégrale où apparaissent les 2 variables
simultanément !

Exemple.

1.

∫ 4

0

1

1 +
√
t
dt on pose x =

√
t

2.

∫ 1

0

√
1− t2dt on pose t = cos(x)
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Chapitre 2

Suites et séries numériques

2.1 Suites numériques

2.1.1 Vocabulaire et notations

Définition (Suite numérique).
On appelle suite numérique une fonction définie sur N à valeurs dans R ou C :

f : N → R

n 7→ f(n)

On note généralement :
u : N → R

n 7→ un

et on dit que un est le n-ième terme de la suite (un)n∈N.

Définition (Suite explicite/récurrente).

⊲ On dit que la suite (un)n∈N est explicite, si on a une expression de un en fonction
de n : un = f(n)

⊲ On dit que la suite (un)n∈N est récurrente (d’ordre 1), si on a une expression de un

en fonction du terme précédent : un = f(un−1)

Exemple.

1. un = 2n+ 3 est une suite explicite. Avec

u0 = 2× 0 + 3 = 3 u1 = 2× 1 + 3 = 5 u2 = 2× 2 + 3 = 7

13



2. un = 2n + 3 est une suite explicite. Avec

u0 = 20 + 3 = 4 u1 = 21 + 3 = 5 u2 = 22 + 3 = 7

3. un+1 = 2un + 3 avec u0 = 3 est une suite récurrente. Avec

u0 = 3 u1 = 2× u0 + 3 = 9 u2 = 2× u1 + 3 = 21

4. un+1 = 2un + 3 avec u0 = 3 est une suite récurrente. Avec

u0 = 3 u1 = 2u0 + 3 = 11 u2 = 2u1 + 3 = 2051

Définition (Suite arithmétique).
On appelle suite arithmétique de raison r ∈ R une suite qui vérifie ∀n ∈ N,

un+1 = un + r (forme récurrente) ou un = u0 + nr (forme explicite)

Exemple.

1. un+1 = un + 4 est une suite arithmétique de raison r = 4

2. un+1 = 3− 2n est une suite arithmétique de raison r = −2 et de premier terme u0 = 3

3. un+1 =
1
3
n est une suite arithmétique de raison r = 1

3
et de premier terme u0 = 0

Définition (Suite géométrique).
On appelle suite géométrique de raison q ∈ R une suite qui vérifie ∀n ∈ N,

un+1 = un × q (forme récurrente) ou un = u0 × qn (forme explicite)

Exemple.

1. un+1 = 4un est une suite géométrique de raison q = 4

2. un+1 = 3× 2n est une suite géométrique de raison r = 2 et de premier terme u0 = 3

3. un+1 =
1
3n

est une suite géométrique de raison r = 1
3
et de premier terme u0 = 1
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Mathématiques

2.1.2 Limite d’une suite

Définition (Suite convergente/divergente).
On dit que la suite (un)n∈N est :

⊲ convergente lorsque un admet une limite finie en +∞, c’est à dire : lim
n→+∞

un = c,

où c ∈ R ou C.

⊲ divergente lorsque la suite n’est pas convergente.

Exemple.

1. lim
n→+∞

2n = +∞ donc la suite un = 2n est divergente.

2. lim
n→+∞

1− 2
n
= 1 donc la suite un = 1− 2

n
est convergente.

3. La suite un = (−1)n n’admet pas de limite en +∞ car elle oscille entre −1 et 1. Cette
suite est donc divergente.

Remarque.
Lorsqu’on étudie la convergence d’une suite, c’est toujours en +∞ ! Faire tendre un nombre
entier n vers 0 (ou tout autre valeur finie) n’a aucun sens.

Théorème. Soit (un)n∈N une suite arithmétique de raison r.

⊲ Si r = 0 alors (un)n∈N est constante et converge vers u0.

⊲ Si r 6= 0 alors (un)n∈N diverge.

Théorème. Soit (un)n∈N une suite géométrique de raison q ∈ R ou C.

lim
n→+∞

un = 0 ⇔ |q| < 1 ou u0 = 0

Remarque.
Si q ∈ R, |q| désigne la valeur absolue de q. Si q ∈ C, |q| désigne le module de q.

Exemple.

1. lim
n→+∞

1
300

× (1, 1)n = +∞ car q = 1, 1 > 1

2. lim
n→+∞

(
1
2

)n
= 0 car q = 1

2
< 1

3. lim
n→+∞

3×
(
−1

5

)n
= 0 car |q| = 1

5
< 1

4. lim
n→+∞

(
1+

√
3i

3

)n
= 0 car |q| =

√
12+(

√
3)2

3
= 2

3
< 1

5. lim
n→+∞

23n

32n
= 0 car 23n

32n
=
(

23

32

)n
d’où |q| = 8

9
< 1
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2.1.3 Somme des termes d’une suite

Définition. Soit (un)n∈N une suite et soit N ∈ N∗. On note
∑N

n=1 un la somme des N
premiers termes de la suite :

N∑

n=1

un = u1 + u2 + u3 + · · ·+ uN

Remarque.
Dans certains cas, la somme ne commencera pas à l’indice 1. La somme des termes d’indices
compris entre n0 et N se note

∑N
n=n0

un.

Exemple.

1.
∑5

n=1 n = 1 + 2 + 3 + 4 + 5

2.
∑4

n=1 2
n = 21 + 22 + 23 + 24

Théorème. Soient (an)n∈N et (bn)n∈N deux suites.

⊲
∑N

n=1(an + bn) =
∑N

n=1 an +
∑N

n=1 bn

⊲ ∀λ ∈ R,
∑N

n=1(λan) = λ
∑N

n=1 an

⊲ ∀λ ∈ R,
∑N

n=1 λ = λN

Théorème. Soit (un)n∈N une suite arithmétique. On a :

u0 + u1 + · · ·+ uN =

N∑

k=0

uk = (u0 + uN)×
N + 1

2

et plus généralement
N∑

k=n0

uk = (un0
+ uN)×

N − n0 + 1

2

Remarque.
Il ne faut pas retenir ces formules mais plutôt :

Somme des termes d’une suite arithmétique = (premier terme+dernier terme)×nombre de termes

2
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Exemple.

1.

31∑

k=0

−4n = (0− 124)× 32

2
= −1984

2.

16∑

k=2

3 + 2n = (7 + 35)× 16− 2 + 1

2
= 315

Théorème. Soit (un)n∈N une suite géométrique de raison q. On a :

u0 + u1 + · · ·+ uN =

N∑

k=0

uk = u0 ×
1− qN+1

1− q

et plus généralement
N∑

k=n0

uk = un0
× 1− qN−n0+1

1− q

Remarque.
Il ne faut pas retenir ces formules mais plutôt :

Somme des termes d’une suite géométrique = premier terme× 1− raisonnombre de termes

1− raison

Exemple.
31∑

k=0

3× 2n = 3× 1− 232

1− 2
= 3(232 − 1)

2.2 Séries numériques

2.2.1 Définitions et premières propriétés

Définition. Soit (un)n≥0 une suite de nombres réels ou complexes. La série de terme

général un est la suite des sommes partielles SN =

N∑

k=0

uk = u0 + u1 + u2 + · · ·+ uN .

Cette série se note S =
+∞∑

n=0

un ou
∑

un.
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Exemples.

1. La série de terme général une suite arithmétique de raison 2 et de 1er terme 3 est∑
2n+ 3.

2. La série de terme général une suite géométrique de raison 1
2
et de 1er terme 3 est

∑
3
2n
.

Définition. On dit que
∑

un converge, lorsque la suite (Sn) a une limite finie. Dans ce
cas, cette limite est la somme de la série.

S =

+∞∑

n=0

un ⇔ S = lim
n→∞

n∑

k=0

uk

Dans le cas contraire, on dit que la série est divergente.

Exemples.

1.
∑

1 diverge. 2.
∑

2n diverge. 3.
∑(

1
2

)n
converge.

Remarque. La convergence de la série

+∞∑

n=0

un ne dépend pas des premiers termes de la suite

(un)n≥0.

Théorème (Séries géométriques).
Soit q ∈ C. On a le résultat suivant :

∑
qnconverge ⇔ |q| < 1

Lorsque la série converge,
+∞∑

n=0

qn =
1

1− q

Exemples.

1.
+∞∑

n=0

e−n converge.
2.
∑(

π
3

)n
diverge.

Théorème. Si
∑

un converge, alors lim
n→+∞

un = 0

Attention, la réciproque de cette proposition est fausse ! !
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Remarque. On utilise la contraposée du théorème précédent pour montrer qu’une série
diverge

Si lim
n→+∞

un 6= 0 alors
∑

un diverge

Exemples.

1.
∑

(−1)× n diverge. 2.
∑

n sin
(
1
n

)
diverge.

Théorème. Soient (un) et (vn) deux suites de nombres réels.

1. Si
∑

un et
∑

vn sont convergentes alors
∑

(un + vn) est convergente.

2. Si
∑

un converge et
∑

vn diverge alors
∑

(un + vn) est divergente.

Méthode pratique de calcul de somme : téléscopage
Si la suite Un peut s’écrire : Un = an − an+1 alors

N∑

n=1

Un = a1 − aN+1

Exemple.

Soit Un =
1

n(n + 1)
.

On peut écrire : Un = 1
n
− 1

n+1
(D.E.S.).

Par téléscopage :

N∑

n=1

1

n(n+ 1)
= 1− 1

N + 1
.

Et donc
+∞∑

n=1

1

n(n + 1)
= lim

N→+∞
1− 1

N + 1
= 1.

Donc la série

+∞∑

n=1

1

n(n+ 1)
converge vers 1.

2.2.2 Critères de convergence des séries numériques positives

Series de Riemann

Théorème (Séries de Riemann).
Soit α ∈ R. On a le résultat suivant

∑ 1

nα
converge ⇔ α > 1
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Exemples.

1.
∑

1
n
diverge. 2.

∑
1
n2 converge. 3.

∑
1√
n
diverge.

Les théorèmes de comparaison

Théorème. Soient (an) et (bn) deux suites réelles, positives et telles que 0 ≤ an ≤ bn à
partir d’un certain rang. Alors :

∑
bn converge ⇒

∑
an converge

∑
an diverge ⇒

∑
bn diverge

Exemples.

1. La série
∑ 1

n2 + 1
converge, car 1

n2+1
≤ 1

n2 .

Théorème. Soient (an) et (bn) deux suites réelles, positives et telles que an ∼
+∞

bn. Alors

∑
an et

∑
bn sont de même nature.

Exemples.

1.
∑

n
n2(n+1)

converge car n
n2(n+1)

∼
+∞

1
n2 ,

2.
∑

sin
(

1
2n

)
converge car sin

(
1
2n

)
∼
+∞

1
2n
,

3.
∑

ln
(
1 + 1

n

)
diverge car ln

(
1 + 1

n

)
∼
+∞

1
n
.
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Chapitre 3

Série de Fourier

Le but de ce chapitre est de :

• Représenter un signal T -périodique comme une somme de fonctions trigonométriques :
s(t) =

∑+∞
n=0 an cos(nωt) + bn sin(nωt)

• Retrouver un signal temporel à partir des spectres d’amplitude et de phase

• Utiliser les séries de Fourier pour calculer des sommes de séries et des intégrales
généralisées

3.1 Signaux périodiques

3.1.1 Préliminaires

Définition. Soit f : R → R une fonction. La fonction f est dite C1 par morceaux sur
[a, b] lorsque f et f ′ sont continues par morceaux sur tout segment de [a, b] (c’est à dire
continues partout sauf éventuellement en un nombre fini de points et f et f ′ admettent
une limite à gauche et à droite en ces points).

Exemple.
La fonction définie par :

0 1 2 3−1−2−3
0

−1

−2

1

2

est C1 par morceaux sur l’intervalle [−3, 4].
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Définition. Une fonction est dite T -périodique lorsque, pour tout t ∈ R,

f(t+ T ) = f(t− T ) = f(t).

Lorsque T est la période d’un signal, la pulsation ω est le nombre ω =
2π

T
.

période T

2×amplitude
f

Définition. On appelle valeur moyenne d’un signal périodique de période T :

V̄ =
1

T

∫

[T ]

f(t)dt.

On appelle valeur efficace d’un signal périodique de période T :

V 2
eff =

1

T

∫

[T ]

(f(t))2dt.

3.1.2 Amplitude et phase

Théorème. Soit un signal périodique de pulsation ω défini par :

s(t) = a cos(ωt) + b sin(ωt).

Alors s(t) s’écrit sous la forme :

s(t) = A sin(ωt+ ϕ)

avec A est l’amplitude et ϕ est la phase à l’origine. Avec :

A =
√
a2 + b2 et





cos(ϕ) =
b

A

sin(ϕ) =
a

A
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Exemple.
Trouver la phase et l’amplitude du signal s(t) =

√
3 cos(2t) + sin(2t)

D’après le théorème précédent, on a A =
√

(
√
3)2 + 12 = 2 et





cos(ϕ) =
1

2

sin(ϕ) =

√
3

2

On en déduit que ϕ =
π

3
, et donc s(t) = 2 sin

(
2t +

π

3

)
.

Définition. Soit un polynôme trigonométrique défini par les n harmoniques :

s(t) = a0 + a1 cos(ω1t) + b1 sin(ω1t) + · · ·+ an cos(ωnt) + bn sin(ωnt).

En regroupant par périodes (ou par fréquences), on obtient la suite
(ω0, A0, ϕ0) . . . (ωn, An, ϕn) décrivant les amplitudes et les phases des harmoniques
du signal temporel s(t).

On appelle spectre d’amplitude le graphique formé des points (ωn, An).
On appelle spectre de phase le graphique formé des points (ωn, ϕn).

Remarque. Le terme a0 correspond à la valeur moyenne et peut être représenté en n = 0 sur
le spectre d’amplitude.

Exemple.
On considère le signal temporel donné par

s(t) = cos(t) +
√
3 cos(2t) + sin(2t) + sin(3t) + cos(4t)− sin(4t)

Les spectres de phases par rapport au sinus et d’amplitudes du signal s sont
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5−0.5
0

−0.5

−1.0

0.5

1.0

1.5

2.0

2.5

3.0

1

2

1

√
2

Amplitude

b

b

b

b

b b b b

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5−0.51.0
0

−0.785

0.785

1.570
π/2

π/3

0

3π/4

ω

Phase

b

b

b

b

b b b b

3.2 Coefficients de Fourier

Dans la suite, f : R → R désigne une fonction définie T -périodique et continue par morceaux.

3.2.1 Calcul des coefficients de Fourier

Définition. On appelle coefficients de Fourier trigonométriques de la fonction f les
nombres réels suivant :





a0(f) =
1

T

∫

[T ]

f(t)dt

∀n ∈ N
⋆, an(f) =

2

T

∫

[T ]

f(t) cos(nωt)dt

∀n ∈ N⋆, bn(f) =
2

T

∫

[T ]

f(t) sin(nωt)dt

avec [T ] désigne un intervalle de longueur T et ω = 2π
T
.

Exemple.
On considère par exemple le signal temporel carré défini par

s(t) =

{
0 si 0 < t ≤ π

1 si π < t ≤ 2π

et périodique de période 2π.
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Après calcul, on trouve :





a0(s) =
1

2
∀n ∈ N∗, an(s) = 0

∀n ∈ N
∗, bn(s) =

(−1)n − 1

πn

Remarque. On peut montrer que ∀n ∈ N∗ : sin(πn) = 0 et cos(πn) = (−1)n

Parfois, il est plus facile de passer dans les complexes pour faire les calculs et c’est pourquoi
on introduit les coefficients de Fourier exponentiels.

Définition. On appelle coefficients de Fourier exponentiels de f les nombres complexes
suivant :

∀n ∈ Z, cn(f) =
1

T

∫

[T ]

f(t)e−inωtdt.

Exemple.
Calcul des coefficients de Fourier exponentiels de la fonction 1-périodique qui vaut exp x dans
[0; 1[ :

∀n ∈ Z, cn =

∫ 1

0

exe−2iπnxdx

=

∫ 1

0

e(1−2iπn)xdx

=
1

1− 2iπn

[
e(1−2iπn)x

]1
0

=

=
1

1− 2iπn

(
e(1−2iπn) − 1

)

=

=
1

1− 2iπn
(e− 1)
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3.2.2 Propriétés des coefficients de Fourier

Théorème. Soit f une fonction T -périodique continue par morceaux.

• Si f est paire, alors pour tout n ∈ N∗ on a

bn = 0, a0 =
2

T

∫ T/2

0

f(t)dt et an =
4

T

∫ T/2

0

f(t) cos(nωt)dt

• Si f est impaire, alors pour tout n ∈ N∗ on a

a0 = 0, an = 0 et bn =
4

T

∫ T/2

0

f(t) sin(nωt)dt

Exemple.
Calcul des coefficients de Fourier du signal triangulaire f suivant :

0 1 2−1−2
0

1

b

b

b

b

b

b

b

b

b

Puisque f est paire, alors pour tout n ∈ N∗, on a bn = 0,

a0 =

∫ 1

0

−t + 1dt =

[
−t2

2
+ t

]1

0

=
1

2

et (par intégration par parties)

an = 2

∫ 1

0

(−t+ 1) cos(nπt)dt = 2

[
(−t+ 1)

sin(nπt)

nπ

]1

0

+ 2

∫ 1

0

sin(nπt)

nπ
dt = 2

[− cos(nπt)

n2π2

]1

0

an = 2
1− (−1)n

π2n2
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Théorème. Soient f et g deux fonctions continues par morceaux, périodiques de même
période, et λ ∈ R

1. an(f + λg) = an(f) + λan(g) et bn(f + λg) = bn(f) + λbn(g)

2. Si de plus, f est continue sur R et C1 par morceaux, alors pour n ∈ N∗

an(f
′) = nωbn(f) et bn(f

′) = −nωan(f)

3. ⋆⋆ lim
n→+∞

|an| = lim
n→+∞

|bn| = 0

Exemple.
Le signal triangulaire précédent étant continu et C1 par morceaux, on peut obtenir, grâce aux
calculs précédents, les coefficients de Fourier de la fonction représentée par

0 1 2−1−2
0

−1

1

Nous allons maintenant faire le lien entre les coefficients de Fourier exponentiels et les
coefficients de Fourier trigonométriques.

Théorème. Soient f et g deux fonctions continues par morceaux, périodiques de même
période, et λ ∈ R

1. Si g(t) = f(t− τ), alors cn(g) = exp−inωτ cn(f).

2. cn = 1
2
(an − ibn)

3. a0 = c0, an = cn + c−n = cn + cn et bn = i(cn − cn).

4. an = 2Re(cn) et bn = −2Im(cn).

5. ⋆⋆ lim
n→+∞

|cn| = 0.

Exemple.
Soit la fonction 1-périodique qui vaut exp x dans [0; 1[. On a vu que :

cn =
1

1− 2iπn
(e− 1)
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Donc on trouve les coefficients de Fourier trigonométriques de f :

an =

(
1

1− 2iπn
+

1

1 + 2iπn

)
(e− 1) =

2(e− 1)

1 + 4π2n2

et

bn = i

(
1

1− 2iπn
− 1

1 + 2iπn

)
(e− 1) = −4πn(e− 1)

1 + 4π2n2

Ce calcul aurait été plus long en calculant directement les coefficients trigonométriques...

3.3 Série de Fourier

Définition. Pour tout N ∈ N∗, on note S
[N ]
f la somme de Fourier partielle d’ordre N ,

définie pour tout t ∈ R par

S
[N ]
f (t) = a0 +

N∑

n=1

(an cos(nωt) + bn sin(nωt)) =

N∑

n=−N

c(n)e−inωt.

Exemple.
Reprenons le signal triangulaire f dont nous avons précédemment calculé les coefficients de
Fourier :

0 1 2−1−2
0

1

b

b

b

b

b

b

b

b

b

On trouve que pour tout N ∈ N, pour tout t ∈ R, on a

S
[N ]
f (t) =

1

2
+

N∑

n=1

2
1− (−1)n

π2n2
cos(nπt)

Définition. La série de Fourier d’une fonction f converge en t si lim
N→+∞

SN [f ](t) est finie.

On note alors cette limite S[f ](t).
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Théorème (Dirichlet).

Soit f une fonction T -périodique, C1 par morceaux. Alors, pour tout t ∈ R, S
[N ]
f (t)

converge et

Sf(t) =
f(t+) + f(t−)

2

avec f(t+) = lim
x→t
x>t

f(x) et f(t−) = lim
x→t
x<t

f(x).

Remarque.

— Lorsque f est continue en t, on a f(t+) = f(t−) et donc Sf(t) = f(t) .

— Le théorème de Dirichlet s’interprète graphiquement par : les courbes des séries de
Fourier partielles S

[N ]
f tendent à ressembler à la courbe du signal f lorsque N tend vers

l’infini. Par ailleurs, lorsque f admet un saut en t, alors la courbe de S
[N ]
f passe par la

valeur moyenne avant et après le saut de f .

Exemple.
On reprend l’exemple de la fonction créneau étudiée précédemment. On a tracé sur le graphe
ci-dessous différentes sommes partielles

0 1 2 3 4 5 6 7−1−2−3

0.2

0.4

0.6

0.8

1.0

Définition. Lorsque l’on a calculé les coefficients de Fourier d’un signal périodique f , le
graphe des amplitudes de la série de Fourier défini par n 7→ An =

√
a2n + b2n = 2|cn| est

le spectre de f .

Remarque.

— Pour n = 0 on représente la valeur moyenne a0.

— Le spectre de f permet de voir les termes qui comptent dans la série de Fourier : si An

est grand, le terme d’ordre n compte beaucoup, et si An est petit, le terme d’ordre n
compte peu.

— D’après les théorèmes précédents, les amplitudes des harmoniques tendent vers 0.
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Exemple.
Considérons la série de Fourier du signal triangulaire du début du chapitre :

Sf(t) =
1

2
+

+∞∑

n=1

2
1− (−1)n

π2n2
cos(nπt)

Le spectre (d’amplitude) des premières harmoniques de f est donc

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5−0.5

0.5

4/π2

4/(3π)2 4/(5π)2 4/(7π)2

b

b b b

b

b

b b

3.4 Le théorème de Bessel-Parseval

Définition. Soit f une fonction T -périodique. On appelle énergie moyenne de f la quan-
tité

E(f) =
1

T

∫

[T ]

|f(t)|2 dt.

Remarque.
L’énergie moyenne est égale au carrée de la valeur efficace du signal : E(f) = V 2

eff .

Théorème. Soit f une fonction T -périodique, continue par morceaux. Alors :

E(f) = a20 +
1

2

∑

n≥1

a2n + b2n.
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Exemple.
Considérons la série de Fourier du signal en créneaux du début du chapitre :

Sf(t) =
1

2
+

+∞∑

n=1

2
1− (−1)n

π2n2
cos(nπt)

D’après le théorème de Parseval, l’énergie moyenne vaut

V 2
eff =

(
1

2

)2

+
1

2

+∞∑

n=1

(
2
1− (−1)n

π2n2

)2

En calculant les 7 premiers termes de la somme on obtient

V 2
eff ≃ 0.3333074

Par ailleurs il est possible de calculer directement l’énergie moyenne :

V 2
eff =

1

T

∫ T

0

|f(t)|2 dt = 1

2

∫ 2

0

(t− 1)2dt =
1

3
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Chapitre 4

Produit de Convolution

4.1 Signaux classiques

4.1.1 Échelon, porte et triangle

Les fonctions suivantes sont des fonctions de références, qui interviendront de manière
récurrente dans ce chapitre et les suivants.

Définition.

1. La fonction échelon unité est définie sur R par

U(x) =
{
0 si x < 0

1 si x ≥ 0

2. La fonction créneau unité, appelée aussi fonction porte, est définie sur R par

Π(x) =




1 si x ∈

[
−1

2
;
1

2

]

0 sinon

3. La fonction triangle est définie sur R par

Λ(x) =





x+ 1 si x ∈]− 1; 0];

−x+ 1 si x ∈]0; 1]
0 sinon
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4.1.2 L’impulsion de Dirac

Soit ǫ > 0. Considérons une fonction Πǫ, définie par

Πǫ(t) =





1

ǫ
si t ∈

[
− ǫ

2
;
ǫ

2

]

0 sinon

−ǫ/2 ǫ/2

1/ǫ

Remarque. Plus ǫ est petit, plus le support de la porte est petit et plus l’amplitude est
grande. Cependant, quelque soit la valeur d’ǫ l’intégrale de Πǫ sur R vaut toujours 1.

Définition. On appellera impulsion de Dirac la limite des fonctions Πǫ quand ǫ tend vers
0 et que l’on notera δ.

δ(t) = lim
ǫ→0

Πǫ(t)

On note
∫
δ(t) son poids qui, par définition, vaut 1.

L’impulsion de Dirac vérifie (propriétés admises) :





δ(t) = 0 si t 6= 0∫ +∞

−∞
δ(t) = 1

∫ +∞

−∞
f(t)δ(t) = f(0) si f continue en 0

f(t)× δ(t) = f(0)× δ(t)

Remarque. Ceci n’est pas cohérent avec l’analyse « classique ». On utilise ici la théorie des
distributions que nous n’allons pas développer ici.
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La représentation de l’impulsion de Dirac se fait avec une flèche dont la hauteur représente le
poids de la distribution :

0 0.5 1.0 1.5−0.5−1.0−1.5
0

−0.5

0.5

1.0
δ(t)

Théorème. Soit τ un nombre réel. L’impulsion δ(t − τ) est une impulsion de Dirac de
poids 1 et retardée de τ .

0 0.5 1.0−0.5−1.0−1.5
0

−0.5

0.5

1.0 δ(t)

Pour tout signal f , on a :

f(t)× δ(t− τ) = f(τ)× δ(t− τ)

Autrement dit, le produit d’une fonction par une impulsion retardée de τ est égal à une
impulsion retardé de τ et de poids f(τ).

35/76



Remarque. On utilise ainsi une somme d’impulsions espacées régulièrement pour effectuer
l’echantillonnage d’un signal :

f(t)×
N∑

k=n

δ(t− kTe)

où Te est la période d’échantillonnage.

0 0.5 1.0 1.5−0.5−1.0−1.5
0

−0.5

0.5

1.0

signal f

×
0 0.5 1.0−0.5−1.0−1.5

0

−0.5

0.5

1.0

« peigne » d’impulsions

=

0 0.5 1.0−0.5−1.0−1.5
0

−0.5

0.5

1.0

signal échantillonné

4.2 Le produit de convolution

4.2.1 Définition

On rappelle que

Définition. Une fonction f est dite intégrable sur R lorsque, pour tout a ∈ R,

∫ +∞

a

f(x)dx

et

∫ a

−∞
f(x)dx convergent.

Exemple. f(t) = e−tU(t), g(t) =
1

1 + t2
, h(t) = sin(t). Les fonctions f et g sont intégrables,

mais pas h.

Définition. Soient f et g deux signaux intégrables sur R. On appelle produit de convo-

lution de f par g la fonction notée f ⋆ g et définie sur R par

f ∗ g(t) =
∫ +∞

−∞
f(x)g(t− x)dx.

Remarque. Le produit de convolution peut exister sans que f et g soient intégrables. La
condition énoncée ci-dessus donne une condition suffisante d’existence de f ∗ g, mais pas
nécessaire.
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Exemple.
Soient f et g les fonctions définies par : f(t) = e−tU(t) et g(t) = U(t). On a alors

f ⋆ g(t) =

∫ +∞

−∞
f(x)g(t− x)dx (4.1)

=

∫ +∞

−∞
e−xU(x)U(t− x)dx (4.2)

=

∫ t

0

e−xdx (4.3)

=
[
−e−x

]t
0

(4.4)

= 1− e−t (4.5)

Le passage de la ligne (4.2) à la ligne (4.3) n’est valable que pour t ≥ 0. Donc la fonction
f ∗ g est causale :

f ⋆ g(t) = (1− e−t)U(t)

Théorème. Le produit de convolution de deux fonctions causales est causal et, dans ce

cas, on peut écrire f ∗ g(t) =
∫ t

0

f(x)g(t− x)dxU(t)

4.2.2 Propriétés

La démonstration de chacune (sauf ⋆⋆) de ces propriétés élémentaires est exigible. . .

Théorème. Soient f, g, h trois fonctions telles que chacun des produits de convolution
considérés existent, et λ ∈ R.

1. f ∗ g = g ∗ f
2. f ∗ (g + h) = f ∗ g + f ∗ h
3. f ∗ (λg) = (λf) ∗ g = λ(f ∗ g)
4. f ∗ (g ∗ h) = (f ∗ g) ∗ h = f ∗ g ∗ h ⋆⋆

Théorème. Soient f, g deux fonctions de classe C1 par morceaux telles que chacun des
produits considérés existent, et soit τ ∈ R. On note fτ la fonction retardé de τ (i.e.
fτ (t) = f(t− τ)). On a

(fτ ∗ g) = f ∗ gτ = (f ∗ g)τ
Si de plus f est continue sur R, on a alors :

f ′ ∗ g = (f ∗ g)′
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4.2.3 Interprétation graphique

Lorsque t est fixé, le produit de convolution de f par g peut être interprété comme la
moyenne de f à l’intérieur d’une fenêtre « glissante » dont la position est donnée par t.

Par exemple, le produit de convolution Π ∗ Π (qui se calcule aussi directement) peut
s’interpréter de la façon suivante :

— Le graphe de x 7→ Π(t− x) s’obtient à partir de celui de x 7→ Π(x) par symétrie par
rapport à l’axe (Oy), puis par un retard de t

— Pour t fixé, la valeur de Π ∗ Π(t) est donc la valeur de l’aire de l’éventuel rectangle
« commun »

Π(t− x) Π(x)

x
t 0 1

Π(t− x)Π(x)

x
t0 1

Π(t− x)Π(x)

t0 1

On obtient donc

Π ∗ Π(x) = Λ(x)

4.3 Exemples fondamentaux

4.3.1 Convolution par l’échelon

Théorème. Soit f une fonction intégrable. Alors,

(f ∗ U)(t) =
∫ t

−∞
f(x)dx

4.3.2 Convolution par une porte

Théorème. Soit f une fonction intégrable. Alors,

(f ∗ Π)(t) =
∫ t+ 1

2

t− 1

2

f(x)dx
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Mathématiques

4.3.3 Convolution par un Dirac

Théorème. Soit f une fonction intégrable. Alors,

(f ∗ δ)(t) = f(t)

Démonstration. On a (f ∗ δ)(t) = (δ ∗ f)(t) =
∫ +∞

−∞
δ(x)f(t− x)dx = f(t) d’après la défintion

de δ (car ft : x 7→ f(t− x) s’annule pour t = x).

Remarque. δ est l’élément neutre pour le produit de convolution.

4.4 Application

4.4.1 Formulaire

Fonction Transformée de Laplace

U(t) 1

p

tU(t) 1

p2

tnU(t) n!

pn+1

Fonction Transformée de Laplace

e−atU(t) 1

p+ a

te−atU(t) 1

(p+ a)2

cos(ωt)U(t) p

p2 + ω2

sin(ωt)U(t) ω

p2 + ω2

4.4.2 Transformée de Laplace

On note L la transformée de Laplace.

Théorème. On a :
Lδ(p) = 1

Démonstration. Lδ(p) =
∫ +∞
−∞ δ(t)e−ptdt = 1 car t 7→ e−pt vaut 1 pour t = 0.
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Théorème (Admis). Si f et g sont deux fonctions causales, admettant chacune une trans-
formée de Laplace. Alors, on a :

Lf∗g(p) = Lf(p)× Lg(p)

Exemple.

1. Calcul de la transformée de Laplace inverse de
1

p2(p+ 1)

2. Calcul de la transformée de Laplace inverse de
2p

(p+ 1)2

4.4.3 Fonction de transfert

Soit un circuit électrique correspondant à un système entrée/sortie linéaire. La sortie s(t) est
« liée » à l’entrée e(t) par une relation différentielle.

e(t)
Système

s(t)

E(p)
Système

S(p)

A l’aide de la transformée de Laplace, on obtient une relation du type

S(p) = H(p)E(p) (4.6)

où S(p) et E(p) sont les transformées de Laplace de s(t) et e(t).
Par transformée de Laplace inverse, on en déduit alors que la sortie s(t) est le produit de
convolution de h(t) avec e(t) :

s(t) = (h ∗ e)(t)
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Par ailleurs, lorsque le signal d’entrée est l’impulsion δ(t), sa transformée de Laplace E(p)
vaut 1, et donc la relation (4.6) devient S(p) = H(p).

Finalement, on obtient le résultat suivant :

Théorème. L’expression temporelle d’un signal s(t) obtenu par filtrage par un filtre li-
néaire d’un signal e(t) est

s(t) = (e ∗ h)(t)
où h(t) est la réponse impulsionnelle du système.
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Chapitre 5

Transformée en Z

Le but de ce chapitre est d’avoir un équivalent de la transformée de Fourier/Laplace adapté
aux signaux numériques discrets.

5.1 Echantillonnage

Définition. Soit f une fonction définie sur R et soit Te un réel strictement positif.
On appelle signal échantillonné associé à f la suite de nombres réels

n ∈ Z 7→ f(nTe).

Le réel Te est la période d’échantillonnage.

Te 2Te
. . .

−Te

3Te
Te 2Te

. . .
−Te

3Te

b

b

b

b

b

b
b

Remarque. Le choix de la période d’échantillonage est important, et ne donne pas toujours

une bonne représentation du signal continu (par exemple, Te =
π

2
pour la fonction sin)
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Exemples.

1. Le signal rampe x(n) = nU(n) est obtenue par échantillonnage de la fonction définie
par f(t) = t avec une période de 1.

2. Soit un signal exponentiel f défini par f(t) = e−αtU(t). Pour la période
d’échantillonnage T , l’échantillonné est x(n) = e−αnTU(n) = (e−αT )nU(n) (c’est une
suite géométrique).

5.2 Transformée en Z d’un signal causal

5.2.1 Définitions

Définition. Un signal x est discret lorsque ses valeurs sont en bijection avec Z, c’est-à-dire
que l’on peut désigner ses valeurs par une suite (x(n))n∈Z.
Il est causal lorsque x(n) = 0, ∀n < 0.

Remarque. Un signal échantillonné est donc un signal discret.

Exemples.

1. x(n) = δ(n)

2. x(n) = U(n)
3. x(n) = nU(n)

Définition. On appelle transformée en Z du signal discret causal x la fonction de la
variable complexe z définie, pour toutes valeurs de z telles que la série converge, par :

X(z) =

∞∑

n=−∞

x(n)z−n =

+∞∑

n=0

x(n)z−n

Remarque. On notera parfois la transformée de x(n) par Z(x)(z) ou encore Zx(z).

Exemples (Fondamentaux).

1. x(n) = δ(n) =⇒ X(z) = 1

2.
n 0 1 2 3 4 5 . . .

x(n) 1 4 6 4 1 0. . .
=⇒ X(z) = 1 + 4z−1 + 6z−2 + 4z−3 + z−4 = (1 + z−1)4

3. x(n) = U(n) =⇒ X(z) =
1

1− z−1
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4. x(n) = anU(n) ∀a ∈ R⋆ =⇒ X(z) =
1

1− az−1

5. x(n) = nU(n) =⇒ X(z) =
z−1

(1− z−1)2

Remarque. Chacune des transformées en Z des exemples précédents n’existe que sur une
partie de l’ensemble des nombres complexes, appelée domaine de convergence. On peut voir,
par exemple, lorsque on démontre l’exemple 3, qu’il est nécessaire d’avoir |z| > 1 pour que la
transformée en Z converge.

5.2.2 Domaine de convergence

La transformée en Z est définie par une somme infinie. Il est donc nécessaire de connaitre
l’ensemble des complexes z tel que la série converge. Pour cela, nous allons utiliser différents
critères de convergence des séries numériques.

Règles de Cauchy et de D’Alembert

Théorème. Soit (un) une suite.

1. Critère de Cauchy : On suppose que lim
n→+∞

n
√
|un| = L. Alors,

∑
un est :

{
convergente si L < 1

divergente si L > 1.

2. Critère de D’Alembert : On suppose que lim
n→+∞

∣∣∣∣
un+1

un

∣∣∣∣ = L. Alors
∑

un est :

{
convergente si L < 1

divergente si L > 1.

Remarque. Lorsque L = 1, on ne peut rien en déduire quant à la convergence de la série.

Exemples.

1.
∑(

2n+1
3n−5

)n
converge car lim

n→+∞
n
√
|un| = lim

n→+∞

∣∣∣∣
(
2n+ 1

3n− 5

)n∣∣∣∣
1

n

=
2

3
< 1

2.
∑

n!
2n

diverge car lim
n→+∞

∣∣∣∣
un+1

un

∣∣∣∣ = lim
n→+∞

(n + 1)!

2n+1
× 2n

n!
= lim

n→+∞

n+ 1

2
= +∞ > 1
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Critères de convergence appliqués à la transformée en Z
D’après le critère de D’Alembert :

Théorème. Soit x un signal discret causal et soit X sa transformée en Z.

On note r = lim
n→+∞

∣∣∣∣
x(n + 1)

x(n)

∣∣∣∣

X(z) =

+∞∑

n=0

x(n)z−n converge ssi |z| > r

On obtient un résultat similaire avec le critère de Cauchy :

Théorème. Soit x un signal discret causal et soit X sa transformée en Z.
On note r = lim

n→+∞
n
√
|x(n)|

X(z) =

+∞∑

n=0

x(n)z−n converge ssi |z| > r

Exemple.

Le domaine de convergence de X(z) =

+∞∑

n=0

nz−n est |z| > 1.

Remarque.
Tant que le signal est “négligeable” par rapport à une suite géométrique, le domaine de
convergence sera |z| > 1.

5.3 Propriétés des transformées en Z
5.3.1 Linéarité

Théorème. Quels que soient (x(n)) et (y(n)) deux signaux discrets et (α, β) ∈ C
2

Z(αx+ βy) = αZ(x) + βZ(y).

Le domaine de convergence de Z(αx+βy) contient l’intersection des domaines de conver-
gence de Z(x) et de Z(y).
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Exemples.

1. La transformée en z de x(n) = (3n+ 2)U(n) est

X(z) = 3
z−1

(1− z−1)2
+ 2

1

1− z−1

2. Application aux signaux échantillonnés de signaux sinusöıdaux : À l’aide des formules
d’Euler, on montre que :

x(n) = sin(ωn)U(n) =⇒ X(z) =
sin(ω)z−1

1− 2 cos(ω)z−1 + z−2

x(n) = cos(ωn)U(n) =⇒ X(z) =
1− cos(ω)z−1

1− 2 cos(ω)z−1 + z−2

5.3.2 Décalage temporel (Retard)

Théorème. Soient k ∈ N et x0 un signal causal discret. On note x le signal discret défini
pour tout n ∈ Z par x(n) = x0(n− k). Alors

X(z) = z−kX0(z).

Le domaine de convergence de X est le même que celui de X0.

Exemple. x(n) = U(n− 1) =⇒ Z(x) =
z−1

1− z−1

5.3.3 Multiplication par an (modulation)

Théorème. Soient a 6= 0 et x0 un signal causal discret. On note x le signal discret défini
pour tout n ∈ Z par x(n) = anx0(n). Alors

X(z) = X0

(z
a

)

Le rayon de convergence R de X vérifie R = |a|r avec r est le rayon de convergence de
X0.

Exemple. x(n) = 2nU(n) = 2nx0(n) avec x0(n) = U(n).
On sait que X0(z) =

1

1− z−1
donc X(z) = X0

(z
2

)
=

1

1−
(z
2

)−1 =
1

1− 2z−1
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5.3.4 Multiplication par n

Théorème. Soit x0 un signal causal discret. On note x le signal discret défini pour tout
n ∈ Z par x(n) = nx0(n). Alors

X(z) = −zX ′
0 (z)

avec X ′
0 (z) =

dX0

dz
(z).

Le rayon de convergence de X est le même que le rayon de convergence de X0.

Exemple. x(n) = nU(n) = nx0(n) avec x0(n) = U(n).
On sait que X0(z) =

1

1− z−1
donc X(z) = −zX ′

0 (z) = −z × −z−2

(1− z−1)2
=

z−1

(1− z−1)2

5.3.5 Décalage temporel (avance)

Théorème. Soit x0 un signal causal discret. On note x le signal discret défini pour tout
n ∈ Z par x(n) = x0(n+ 1)U(n). Alors

X(z) = z(X0(z)− x0(0)).

Par récurrence on a ∀k ∈ N⋆, si x(n) = x0(n+ k)U(n), alors

X(z) = zk

(
X0(z)−

k−1∑

p=0

x0(p)z
−p

)

Le domaine de convergence de X est le même que celui de X0.

Ce dernier résultat sera surtout utilisé dans la dernière partie de ce chapitre : résolution
d’équations aux différences.

5.3.6 Convolution discrète

Définition. Soient a(n) et b(n) deux signaux discrets causaux. On appelle produit de
convolution (ou produit de Cauchy) le signal discret causal a ⋆ b défini par

a ⋆ b(n) =

(
n∑

k=0

a(k)× b(n− k)

)
U(n)
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Exemple. On note a(n) = U(n) et b(n) = nU(n), on a alors pour n ≥ 0 :

a ⋆ b(n) =

n∑

k=0

a(k)× b(n− k)

=

n∑

k=0

n− k

=
n∑

k=0

k

=
n(n+ 1)

2

Donc a ⋆ b(n) =
n(n+ 1)

2
U(n).

Théorème. Soient a(n) et b(n) deux signaux discrets causaux de transformées en Z :
A(z) et B(z). La transformée en Z du produit de convolution a ⋆ b est A(z)× B(z).

Exemple. On note a(n) = U(n) et b(n) = nU(n). On sait que A(z) =
1

1− z−1
et

B(z) =
z−1

(1− z−1)2
.

On a donc la transformée en Z de a ⋆ b(n) =
n(n + 1)

2
U(n) : X(z) =

z−1

(1− z−1)3
.

Remarque.

— Comme en continu, le produit de convolution discret est commutatif.

— On obtient un résultat en tout point similaire à celui de la transformée de Laplace du
produit de convolution de deux fonctions causales.

— Ce résultat va nous permettre de déterminer la transformée en Z inverse de certaines
transformées.

5.4 Transformée en Z inverse

But : Connaissant X(z), on souhaite trouver un signal causal discret x(n) tel que X soit sa
transformée en Z.

Il existe une formule permettant de déterminer le signal x(n) connaissant X(z) mais le calcul
fait appel à un calcul intégrale le long d’un chemin complexe...
Nous allons préférer utiliser la même méthode que pour déterminer la transformée de Laplace
inverse : par identification.
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Exemple. Soit la fonction X(z) =
z

(z − 1)(z + 2)
. Déterminons le signal x(n) dont X est la

transformée en Z :

X(z) = z × 1

(z − 1)(z + 2)

= z ×
(

a

z − 1
+

b

z + 2

)

= z ×
(

1/3

z − 1
− 1/3

z + 2

)

=
1

3
× z

z − 1
− 1

3
× z

z + 2

=
1

3
× 1

1− z−1
− 1

3
× 1

1 + 2z−1

On reconnâıt alors la transformée en Z du signal

x(n) =
1

3
U(n)− 1

3
(−2)nU(n)

5.5 Application aux suites récurrentes

On considère la suite (xn) définie par une relation de récurrence. Par exemple :





xn+2 = xn+1 + xn

x(0) = 1
x(1) = 1

Nous souhaitons obtenir une expression de xn en fonction de n. Nous allons utiliser la même
téchnique que lorsqu’on résolvait des équations différentielles à l’aide de la transformée de
Laplace (d’ailleurs, la recherche de xn est parfois appelé « équation aux différences »).

Méthode :

— On considère la suite comme un signal causal discret

— On applique la transformée en Z à l’équation de récurrence.

— On utilise la propriété de l’avance.

— On obtient la transformée de x

— On détermine xn en passant à la transformée inverse.

Remarque. La relation de récurrence définie dans l’exemple ci-dessus est la définition de la
suite de Fibonacci.
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Chapitre 6

Equations différentielles linéaires du second
ordre

Définition. On appelle équation différentielle du second ordre à coefficients constants :

ay′′(t) + by′(t) + cy(t) = f(t) (6.1)

avec
• a ∈ R∗ est une constante donnée,
• b et c sont des réels donnés,
• f : I ⊂ R → R est une fonction donnée appelée second membre de l’équation
• y l’inconnue de l’équation.

Exemple.

1. Le second membre de l’équation différentielle y′′(t)− 3y′(t) + 2y(t) = t− 3 est
f(t) = t− 3

2. Le second membre de l’équation différentielle 2y′(t) + 3y(t) = sin(3t) est f(t) = sin(3t)

3. Le second membre de l’équation différentielle y′′(t)− 2y(t) = e−4t est f(t) = e−4t

Définition. On appelle solution particulière de l’équation (6.1) une fonction, que l’on
peut noter yp(x), qui est solution de l’équation (6.1).

(c’est-à-dire qui vérifie ay′′p(t) + by′p(t) + cyp(t) = f(t)).

Exemple.

1. Vérifier que yp(t) =
1

2
t− 3

4
une solution particulière de l’équation différentielle

y′′(t)− 3y′(t) + 2y(t) = t− 3
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2. Vérifier que yp(t) =
1

15
sin(3t)− 2

15
cos(3t) une solution particulière de l’équation

différentielle 2y′(t) + 3y(t) = sin(3t)

3. Vérifier que yp(t) =
1

14
e−4t une solution particulière de l’équation différentielle

y′′(t)− 2y(t) = e−4t

6.1 Résolution de l’équation homogène associée

Définition. L’équation homogène associée à l’équation différentielle (6.1) est obtenue en
prenant le second membre égal à 0 :

ay′′(t) + by′(t) + cy(t) = 0 (6.2)

Pour résoudre l’équation différentielle (6.2), on a besoin de définir le polynôme caractéristique
associé.

Définition. On appelle polynôme caractéristique associé à l’équation homogène (6.2) le
polynôme suivant :

ar2 + br + c (6.3)

Les solutions de l’équation différentielle homogène (6.2) vont dépendre des solutions du
polynôme caractéristique. Plus précisément, on a le théorème suivant :

Théorème. On considère l’équation différentielle homogène (6.2)

ay′′(t) + by′(t) + cy(t) = 0

et son polynôme caractéristique associé P (r) = ar2 + br + c.

On note ∆ le discriminant de P et r1 et r2 les racines de P .
• Si ∆ > 0 les solutions de (6.2) sont : {f(t) = Aer1t +Ber2t; (A,B) ∈ R

2}.
• Si ∆ = 0 les solutions de (6.2) sont : {f(t) = (At + B)er0t; (A,B) ∈ R2} où
r0 = r1 = r2.
• Si ∆ < 0 les solutions de (6.2) sont : {f(t) = eαt(A cos(βt) +B sin(βt)); (A,B) ∈ R2}
où α et β sont respectivement la partie réelle et la partie imaginaire de r1 (ou de r2,
sachant que r2 = r1).
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Mathématiques

Exemple.

1. Déterminer l’ensemble des solutions de l’équation différentielle (6.4) :

y′′(t)− 2y(t) = 0 (6.4)

Le polynôme caractéristique est r2 − 2.
On calcule le discriminant du polynôme caractéristique : ∆ = 8.
Le polynôme caractéristique admet donc deux racines distinctes : r1 =

√
2 et r2 = −

√
2.

D’après le théorème précédent, l’ensemble des solutions de l’équation différenrielle (6.4)
est

SH =
{
t → Ae

√
2t +Be−

√
2t/(A,B) ∈ R

2
}
.

2. Déterminer l’ensemble des solutions de l’équation différentielle (6.5) :

y′′(t)− 2y′(t) + y(t) = 0 (6.5)

Le polynôme caractéristique est r2 − 2r + 1.
On calcule le discriminant du polynôme caractéristique : ∆ = 0.
Le polynôme caractéristique admet donc une racine double : r0 = 1.
D’après le théorème précédent, l’ensemble des solutions de l’équation différenrielle (6.4)
est

SH =
{
t → (A+Bt)et/(A,B) ∈ R

2
}
.

3. Déterminer l’ensemble des solutions de l’équation différentielle (6.6) :

y′′(t) + 2y′(t) + 2y(t) = 0 (6.6)

Le polynôme caractéristique est r2 + 2r + 2.
On calcule le discriminant du polynôme caractéristique : ∆ = −4 < 0, donc les solutions
du polynôme caractéristique sont r1 = −1 + i et r2 = −1 − i.
On pose donc α = Re(r1) = −1 et β = Im(r1) = 1.
D’après le théorème précédent, l’ensemble des solutions de l’équation différenrielle (6.4)
est

SH =
{
t → e−t(A cos(t) +B sin(t))/(A,B) ∈ R

2
}
.
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6.2 Résolution de l’équation avec second membre

6.2.1 Ensemble des solutions

Théorème. Soit yp une solution particulière de l’équation (6.1). Alors, les solutions de
l’équation (6.1) sont toutes de la forme :

y(t) = yp(t) + yh(t)

avec yh ∈ SH une solution de l’équation homogène.

Remarque.
Cela signifie que l’on obtient toutes les solutions de l’équation (6.1) en sommant les solutions
de l’équation homogène associée (6.2) et une solution particulière de l’équation (6.1).

Exemple.
On veut déterminer l’ensemble des solutions de l’équation différentielle :

y′′(t)− 2y(t) = e−4t (6.7)

On a vu dans L’exemple précedent que l’ensemble des solutions de l’équations homogène
associée est :

SH =
{
t → Ae

√
2t +Be−

√
2t/(A,B) ∈ R

2
}
.

On a aussi vu au début du chapitre qu’une solution particulière est
1

14
e−4t.

On en déduit que l’ensemble des solutions de l’équation différentielle (6.7) est

S =

{
t → 1

14
e−4t + Ae

√
2t +Be−

√
2t/(A,B) ∈ R

2

}

6.2.2 Recherche d’une solution particulière

Comment trouver une solution particulière ? On recherche une solution particulière en
s’inspirant de la forme du second membre.

• Cas 1 : Si f(t) = a ∈ R (autrement dit, si f est une constante), alors on recherche une
solution particulière sous la forme d’une constante (sauf cas particulier).

Exemple.
On considère l’équation différentielle y′′(t)− 3y′(t) + 2y(t) = −3.
On recherche une solution particulière sous la forme d’une constante : yp(t) = k avec
k ∈ R à déterminer.
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On dérive 2 fois : y′p(t) = 0 et y′′p(t) = 0, puis on remplace dans l’équation : 2k = −3.
Par identification : k = −3

2
.

Donc la fonction yp(t) = −3
2
est une solution particulière de l’équation

y′′ − 3y′ + 2y = −3.

Cas particulier : Si yp(t) = k ne fonctionne pas (c’est parce que le second membre est
solution de l’équation homogène), alors on pose yp(t) = kt ou yp(t) = kt2.

• Cas 2 : Si f(t) = P (t) est un polynôme et que c 6= 0, alors on recherche une solution
particulière sous la forme d’un polynôme de même degré que P (sauf cas particulier).

Exemple.
On considère l’équation différentielle y′′(t)− 3y′(t) + 2y(t) = t− 3.
On recherche une solution particulière sous la forme d’un polynôme de degré 1 :
yp(t) = at + b avec a ∈ R et b ∈ R deux constantes à déterminer.
On dérive 2 fois : y′p(t) = a et y′′p(t) = 0, puis on remplace dans l’équation :
0− 3a+ 2(at+ b) = t− 3.
Par identification : 2a = 1 et 2b− 3a = −3.

Donc a =
1

2
et b = −3

4
.

Donc la fonction yp(t) =
1

2
t− 3

4
est une solution particulière de l’équation

y′′(t)− 3y′(t) + 2y(t) = t− 3.

Cas particulier : Si un polynôme de même degré ne fonctionne pas (c’est parce que le
second membre est solution de l’équation homogène), alors on augmente le degré du
polynôme de 1 ou 2.

• Cas 3 : Si f(t) = emt avec m ∈ R, on recherche une solution particulière sous la forme :

yp(t) =





at2emt si f(t) et tf(t) sont solutions de l’équation homogène associée

atemt si f(t) (et pas tf(t)) est solution de l’équation homogène associée

aemt sinon

Exemple.
On cherche une solution particulière de (E) 2y′′(t) + y′(t)− y(t) = e2t.
On cherche une solution particulière sous la forme yp(t) = ke2t, avec k ∈ R une
constante à déterminer. On dérive yp deux fois et on remplace les fonctions dans (E) :

2y′′p(t) + y′p(t)− yp(t) = e2t ⇔ 2× 4ke2t + 2ke2t − ke2t = e2t

⇔ 9ke2t = e2t

⇔ 9k = 1

Donc la fonction yp(t) =
1

9
e2t est une solution particulière de (E).
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• Cas 4 : Si f(t) = α cos(ωt) ou si f(t) = β sin(ωt) avec ω, α et β trois constantes réelles.
On recherche une solution particulière sous la forme yp(t) = a cos(ωt) + b sin(ωt) avec a
et b deux constantes à déterminer (sauf cas particulier).

Exemple.
On considère l’équation différentielle

y′′(t)− 2y′(t) + y(t) = cos(t) + 3 sin(t) (6.8)

On recherche une solution particulière sous la forme : yp(t) = A cos(t) +B sin(t) avec A
et B deux constantes à déterminer.
On calcule y′p et y′′p : y′p(t) = −A sin(t) +B cos(t) et y′′p(t) = −A cos(t)− B sin(t).
On remplace dans le membre de gauche de (6.8) :

y′′p(t)− 2y′p(t) + yp(t) = 2A sin(t)− 2B cos(t).

On procède ensuite par identification : on veut que
2A sin(t)− 2B cos(t) = cos(t) + 3 sin(t).

On en déduit que A =
3

2
et B = −1

2
.

Une solution particulière de l’équation différentielle (6.8) est yp(t) =
3

2
cos(t)− 1

2
sin(t)

Cas particulier : Si le second membre est également solution de l’équation différentielle
homogène, il faut chercher une solution particulière sous la forme
yp(t) = at cos(ωt) + bt sin(ωt) avec a et b deux constantes à déterminer.

Exemple.
Soit l’équation différentielle (E) :

y′′(t) + 4y(t) = 4 cos(2t) (E)

(a) Résoudre l’équation homogène associée à (E).

(b) Est-il possible de trouver une solution particulière de (E) de la forme
yp(t) = A cos(2t) +B sin(2t) ?

(c) Montrer que la fonction y(t) = t sin(2t) est solution de (E).

Principe de superposition Le résultat suivant est utile pour rechercher une solution
particulière d’une équation différentielle dont le second membre f(t) s’écrit comme la somme
de plusieurs fonctions.
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Théorème. On considère une équation différentielle du second du type :

ay′′(x) + by′(x) + cy(x) = f1(x) + f2(x) (6.9)

avec f1, f2 : I ⊂ R → R sont deux fonctions continues.

Soit y1 une solution particulière de ay′′(x)+ by′(x)+ cy(x) = f1(x) et soit y2 une solution
particulière de ay′′(x) + by′(x) + cy(x) = f2(x).

Alors y1 + y2 est une solution de (6.9).

6.3 Ajout d’une condition initiale

Nous allons voir que le fait d’imposer la valeur de la solution de l’équation différentielle (6.1)
et de sa dérivée en un point (par exemple imposer y(2) = 0 et y′(2) = 1 ) permet d’obtenir
une unique solution à l’équation différentielle.

Définition. On appelle condition initiale associée à une équation différentielle d’ordre 2
le fait d’imposer la valeur de la solution de l’équation différentielle et de sa dérivée en un
point. On impose à la solution des conditions supplémentaires :

{
y(t0) = a
y′(t0) = b

avec a et b deux constantes données.

Remarque.
Remarquons que l’on impose la valeur à y et y′ au même point t0.

Exemple.
On s’intéresse au système différentiel suivant :





y′′(t)− 2y′(t) + y(t) = cos(t) + 3 sin(t)
y(0) = 0
y′(0) = 0

1. Déterminons l’ensemble des solutions de l’équation homogène associée

y′′(t)− 2y′(t) + y(t) = 0 (6.10)

On calcule le discriminant de l’équation caractéristique : ∆ = 0. L’équation
caractéristique admet donc une racine double : x0 = 1. D’après le cours, l’ensemble des
solutions de (6.10) est
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SH =
{
t → (A+ Bt)et/(A,B) ∈ R

2
}
.

2. Déterminons la valeur des constantes a et b pour que y(t) = a cos(t) + b sin(t) soit
solution de l’équation différentielle :

y′′(t)− 2y′(t) + y(t) = cos(t) + 3 sin(t) (6.11)

On calcule y′ et y′′ : y′(t) = −a sin(t) + b cos(t) et y′′(t) = −a cos(t)− b sin(t).
On remplace dans le membre de droite de (6.11) :

y′′(t)− 2y′(t) + y(t) = −y(t)− 2y′(t) + y(t) = 2a sin(t)− 2b cos(t).

On veut que 2a sin(t)− 2b cos(t) = cos(t) + 3 sin(t). Par identification, on en déduit que

a =
3

2
et b = −1

2
.

3. En en déduit l’ensemble des solutions de l’équation différentielle (6.11).

S =

{
t → 3

2
cos(t)− 1

2
sin(t) + (A+Bt)et/(A,B) ∈ R

2

}
.

4. Déterminons la solution de l’équation (6.11) qui vérifie y(0) = 0 et y′(0) = 0.

D’après la question 4., les solutions de (6.11) sont de la forme :

y(t) =
3

2
cos(t)− 1

2
sin(t) + (A +Bt)et.

Calculons y′ :

y′(t) = −3

2
sin(t)− 1

2
cos(t) + Aet +B(et + tet).

Les conditions y(0) = 0 et y′(0) = 0 conduisent au système suivant :





A +
3

2
= 0

−1

2
+ A+B = 0

On en déduit A = −3

2
et B = 2. L’unique solution de de (6.11) vérifiant de plus

y(0) = 0 et y′(0) = 0 est y(t) =

(
2t− 3

2

)
et − sin(t)

2
+

3 cos(t)

2
.
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Remarque.
On obtient une unique solution car le fait d’imposer une condition initiale à la fonction
permet de fixer les constantes intervenant dans la forme générale des solutions.

On peut énoncer le théorème général suivant :

Théorème. Soit f : I ⊂ R → R une fonction continue, a ∈ R, t0 ∈ I, a ∈ R et b ∈ R

données. Le système 



ay′′(t) + by′(t) + cy(t) = f(t)
y(t0) = a
y(t0) = b

admet une unique solution sur I.

6.4 Pour résumer

Méthode : Pour résoudre une équation différentielle linéaire d’ordre 2 (E) il suffit donc de
• Résoudre l’équation homogène associée (H),
• Trouver yp une solution particulière de (E),
• Conclure que les solutions de (E) sont données par la somme des solutions de (H) et de yp,
• Déterminer la (ou les) constante(s) grâce aux conditions initiales.

On peut également utiliser la transformée de Laplace.
Méthode :
• Appliquer la transformée de Laplace à l’équation (E),
• Déterminer Ly, la transformée de Laplace de la solution y,
• Appliquer la transformée inverse pour en déduire l’expression de y.

Remarque. Pour cela, on utilise la propriété :

Lf ′(p) = pLf (p)− f(0+)

On a également :

Lf ′′(p) = pL′
f(p)− f ′(0+)

= p
(
pLf(p)− f(0+)

)
− f ′(0+)

= p2Lf(p)− pf(0+)− f ′(0+)

Exemple. {
y′′ + 4y′ − 5y = e2tU(t) (E)

y(0) = 1, y′(0) = 2
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On applique la transformée de Laplace. On obtient :

(E) ⇒ Ly′′(p) + 4Ly′(p)− 5Ly = Le2tU(t)(p)

⇒
(
p2Ly(p)− p− 2

)
+ 4 (pLy(p)− 1)− 5Ly =

1

p− 2

⇒ Ly(p)
(
p2 + 4p− 5

)
=

1

p− 2
+ p+ 6 =

p2 + 4p− 11

p− 2

⇒ Ly(p) =
p2 + 4p− 11

(p− 2)(p2 + 4p− 5)
=

p2 + 4p− 11

(p− 2)(p− 1)(p+ 5)

⇒ Ly(p) =
1/7

p− 2
+

1

p− 1
+

−1/7

p+ 5

On reconnâıt la transformée de Laplace de :

y(t) =

(
1

7
e2t + et − 1

7
e−5t

)
U(t)
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Chapitre 7

Transformée de Fourier

7.1 Définitions

7.1.1 Introduction

On souhaite prolonger ce que l’on a vu dans les séries de Fourier aux cas des fonctions non
périodiques.
On va définir un opérateur F qui à un signal f associe une fonction notée Ff (ou F(f) . Puis
on cherchera, comme pour les séries de Fourier et le théorème de Dirichlet, des conditions
pour obtenir une « transformation inverse » permettant de reconstruire f à partir de F .

Dans la suite, et sauf mention contraire, les fonctions considérées seront :

— C1 par morceaux

— Absolument intégrable :

∫ +∞

−∞
|f(t)|dt < ∞.

7.1.2 La transformée

Définition. La transformée de Fourier de f est la fonction définie pour tout s ∈ R, et à
valeur dans C, par

Ff(s) =

∫ +∞

−∞
e−2iπstf(t)dt.

On notera aussi f̂(s), ou encore F(f)(s).

Remarques.

— Ff existe car

∫ +∞

−∞
|f(t)|dt < ∞.
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— Ff est une fonction continue qui tend vers zéro quand s tend vers l’infini.

— A priori, Ff(s) ∈ C ; mais nous verrons par la suite que, sous certaines conditions, les
images de Ff sont des réels ou des imaginaires purs.

Démonstration. Pour montrer que Ff tend vers 0 à l’infini, il suffit de faire une intégration
par partie, possible car f est C1 par morceaux.

Définition. La courbe d’équation y(s) = |Ff(s)| (module de Ff) est appelée le spectre
d’amplitude de f

7.2 Exemples fondamentaux

7.2.1 Signal porte

Soit Π le signal définie par : {
Si t ∈ [−1

2
; 1
2
], Π(t) = 1

Si t /∈ [−1
2
; 1
2
], Π(t) = 0

Alors, FΠ(s) =
sin(πs)

πs
si s 6= 0, et FΠ(0) = 1.

Π F(Π)

0 0.5 1.0−0.5−1.0

0.5

1.0

0 2 4−2−4
0

−0.2

0.2

0.4

0.6

0.8

1.0

f

Remarque. La transformée de Fourier de la porte est une fonction de R dans R.

7.2.2 Signal triangulaire

Soit Λ le signal défini par :





Si 0 ≤ t < 1, Λ(t) = −t + 1

Si − 1 ≤ t < 0, Λ(t) = t+ 1

Si |t| > 1, Λ(t) = 0
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Alors FΛ(s) =

(
sin(πs)

πs

)2

si s 6= 0 et FΛ(s) = 1.

Λ F(Λ)

0 0.5 1.0 1.5−0.5−1.0−1.5
0

−0.5

0.5

1.0

0 1 2 3−1−2−3

0.2

0.4

0.6

0.8

Remarque. La transformée de Fourier du triangle est une fonction de R dans R.

7.3 Propriétés

7.3.1 Parité

Théorème.

1. Si f est une fonction réelle et paire, alors Ff est réelle et paire et

Ff(s) = 2

∫ +∞

0

f(t) cos(2πst)dt

2. Si f est une fonction réelle et impaire, alors Ff est imaginaire pure et paire et

Ff(s) = −2i

∫ +∞

0

f(t) sin(2πst)dt.

Démonstration. 1. Ff(s) =

∫ 0

−∞
f(t)e−2iπstdt+

∫ +∞

0

f(t)e−2iπstdt

=

∫ +∞

0

f(−t)e2iπstdt+

∫ +∞

0

f(t)e−2iπstdt par changement de variable

=

∫ +∞

0

f(t)e2iπstdt+

∫ +∞

0

f(t)e−2iπstdt car f est paire

=2

∫ +∞

0

f(t) cos(2πst)dt
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Exemple. On considère le « train d’onde » f défini par :

f(t) =

{
cos(t) si t ∈

[
−π

2
;
π

2

]

0 sinon

Comme f est paire, on a

Ff(s) = 2

∫ π
2

0

cos(t) cos(2πst)dt =

∫ π
2

0

cos((2πs+ 1)t) + cos((2πs− 1)t)dt

soit Ff(s) =
sin
(
(2πs+ 1)

π

2

)

2πs+ 1
+

sin
(
(2πs− 1)

π

2

)

2πs− 1
.

7.3.2 Opérations sur les fonctions

Théorème. Soient f et g deux fonctions C1 par morceaux et de module intégrable.

1. La transformée de Fourier est linéaire :

Ff+λg = Ff + λFg

2. Dilatation : Soit a un réel non nul. On pose,

∀t ∈ R, g(t) = f(at).

Alors, pour tout réel s, on a :

Fg(s) =
1

|a|Ff

(s
a

)
.

3. Formule du retard :

Soit a un réel (positif pour un retard...). On pose,

∀t ∈ R, g(t) = f(t− a).

Alors, pour tout réel s, on a :

Fg(s) = e−2iπasFf(s).

(On obtient une modulation fréquentielle).

4. Transformée d’une dérivée :

Si f est continue, et si f ′ ∈ L1, alors on a :

Ff ′(s) = 2iπsFf(s)
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Exemple.

1. Soit f(x) = Π
(x
2

)
, alors Ff(s) = 2

sin(2πs)

2πs
=

sin(2πs)

πs
:

f Ff

0 0.5 1.0−0.5−1.0

0.5

1.0

0 2 4−2−4

0.5

1.0

1.5

2.0

f

2. Soit f(x) = Π(x− 0, 5). Alors, Ff(s) = e−iπs sin(πs)

πs
.

3. Grâce à la transformée d’une dérivée, on peut retrouver la transformée de la fonction
triangle à l’aide de celle de la fonction porte.

Théorème (admis). ∀s ∈ R Ff∗g(s) = Ff(s)×Fg(s).

Remarque.
La transformée de Fourier d’un produit de convolution est donc le produit (classique) des
transformées.

7.4 Formule d’inversion et applications

Définition. Soit F une fonction C1 par morceaux et absolument intégrable. La transfor-
mée de Fourier inverse de F est la fonction, notée F−1

F , définie pour tout s ∈ R par

F−1
F (t) =

∫ +∞

−∞
e2iπstF (s)ds.
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On admettra le théorème suivant :

Théorème (Formule d’inversion). Si f est C1 par morceaux et absolument intégrable dont
la transformée de Fourier est notée f̂ alors

F−1

f̂
(t) =

1

2
[f(t+) + f(t−)].

Si de plus f est continue, alors,
F−1

f̂
(t) = f(t).

Exemple (Applications).
On a pu observer que FΠ × FΠ = FΛ, on en déduit que Λ = Π ∗ Π.

Remarque.

On a donc vu que, pour une fonction continue, f(x) =

∫ +∞

−∞
f̂(t)e2iπxtdt.

On remarque alors que f(−x) =

∫ +∞

−∞
f̂(t)e−2iπxtdt = Ff̂(x).

Autrement dit :
FFf

(t) = f(−t)

Et en particulier, si f est paire, alors :

FFf
(t) = f(t)

7.5 Conservation de l’énergie, Identité de Parseval

Théorème (Identité de Parseval). Soient f et g deux fonctions de carrés intégrables.
Alors ∫ ∞

−∞
f(t)g(t)dt =

∫ ∞

−∞
Ff(s)Fg(s)ds.

En particulier : ∫ ∞

−∞
f(t)2dt =

∫ ∞

−∞
|Ff(s)|2ds.
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Remarque.

— Ce résultat s’interprète par le fait que l’énergie moyenne du signal temporel f est égale
à l’énergie moyenne du signal fréquentiel Ff .
Autrement dit, la transformée de Fourier conserve l’énergie.

— En mathématiques, on utilisera ce résultat pour calculer des intégrales. Il arrive en effet
que l’intégrale du carré de Ff soit plus simple à calculer que l’intégrale du carré de f .
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Chapitre 8

Développements limités

8.1 Introduction

Le but de ce chapitre est d’approximer une fonction (quelconque) par un polynôme, au
voisinage de zéro. C’est-à-dire, trouver un polynôme dont le comportement asymptotique
lorsque x tend vers zéro, est semblable au comportement de la fonction.

Exemple. Soit la fonction définie par f(x) = ln(1 + x).

On trace les courbes représentatives de f et de P1(x) = x, P2(x) = x− x2

2
et

P3(x) = x− x2

2
+

x3

3
:

0 0.5 1.0 1.5 2.0 2.5−0.5−1.0
0

−1

−2

1

2

f

P1

P2

P3
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On observe que les courbes de P1, P2 et P3 sont « proches » de la courbe de f au voisinage
de 0.

Remarque. On peut se poser plusieurs questions :

— Comment quantifier proprement le fait d’approximer une fonction par une autre ?

— Comment trouver ces polynômes ?

8.2 Comparaison de fonctions

Définition. Soient f et g deux fonctions et soit a ∈ R ∪ {±∞}. On dit que f et g sont

équivalentes en a si et seulement si lim
x→a

f(x)

g(x)
= 1.

On note alors f ∼
a
g.

Exemple.

1.
2x+ 1

x2 − 3x+ 2
∼
+∞

2

x
.

2.
2x+ 1

x2 − 3x+ 2
∼
0

1

2
.

Remarque.

— les fonctions f et g ne sont pas nécessairement définies en a.

— on utilise souvent la définition du nombre dérivé pour démontrer une équivalence :

Rappel : f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

— la notion d’équivalence n’est pas stable par addition : f ∼
a
g et h ∼

a
l n’implique pas que

f + h ∼
a
g + l.

— la notion d’équivalence est stable par multiplication ou par passage au quotient.

Exemple.

1. sin(x) ∼
0
x.

2. (1 + x)α − 1 ∼
0
αx.

Définition. Soient f et g deux fonctions et soit a ∈ R∪{±∞}. On dit que f est négligeable

devant g en a si et seulement si lim
x→a

f(x)

g(x)
= 0.
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Exemple.

1. f(x) = x5 est négligeable devant g(x) = x3 en 0.

2. f(x) = x2 est négligeable devant g(x) = x5 en +∞.

Définition. Dans tout le chapitre on note ε toute fonction qui tend vers 0 quand x tend
vers 0.

Définition. Soient f et g deux fonctions. Si f est négligeable devant g en zéro alors il
existe une fonction ε telle que f(x) = g(x)ε(x).

Exemple. Soient n et m deux entiers tels que n > m. Alors xn = xmε(x).

8.3 Développements limités

8.3.1 Définition

Définition. On dit que f admet un développement limité au voisinage de x0 à l’ordre
n ∈ N si f s’écrit au voisinage de x0 sous la forme :

f(x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n + (x− x0)
nε(x− x0)

= Pn(x) + (x− x0)
nε(x− x0)

avec ai ∈ R pour i = 0, . . . , n.
Le polynôme Pn est appelé partie principale du développement limité et (x−x0)

nε(x−x0)
est appelé le reste d’ordre n.
En particulier, pour x0 = 0, le développement limité au voisinage de 0 à l’ordre n ∈ N

s’écrit :
f(x) = a0 + a1x+ a2x

2 + . . .+ anx
n + xnε(x)

où ε(x) → 0 quand x → 0.

Remarque. On utilisera la notation DLn(x0) pour désigner un développement limité au
voisinage de x0 à l’ordre n ∈ N.

Exemple. Fondamental 1

On cherche le DLn(0) de f(x) =
1

1− x
.

On sait que
1

1− x
=

+∞∑

n=0

xn pour tout x ∈]− 1; 1[.
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Donc f admet pour développement limité en 0 :

1

1− x
= 1 + x+ x2 + . . .+ xn + xnε(x)

Théorème. Formule de Taylor-Young Soit f une fonction n-fois dérivable en 0. Alors
f admet un DLn(0) donné par :

f(x) = f(0)+f ′(0)x+
f ′′(0)

2!
x2+

f (3)(0)

3!
x3+. . .+

f (n)(0)

n!
xn+xnε(x) =

n∑

k=0

f (k)(0)

k!
xk+xnε(x)

Exemple. Fondamental 2
Soit la fonction f(x) = ex. On sait que pour tout k on a f (k)(x) = ex et donc f (k)(0) = 1. On
applique la formule de Taylor-Young et on obtient le développement limité à l’ordre n de
exponentielle :

ex = 1 + x+
1

2
x2 +

1

3!
x3 + . . .+

1

n!
xn + xnε(x) =

n∑

k=0

1

k!
xk + xnε(x)

Remarque. Cette formule permet aussi d’obtenir aisément les développements limités en 0
des fonctions cosinus et sinus. Nous allons les calculer par la suite grâce aux propriétés
d’additions des développements limités.

8.3.2 Unicité

Théorème. Soit f une fonction admettant un DLn(0). La partie principale de DLn(0)
est unique.

Remarque.

— Soit f une fonction paire admettant un DLn(0). La partie principale de son DLn(0) est
un polynôme pair.

— Soit f une fonction impaire admettant un DLn(0). La partie principale de son DLn(0)
est un polynôme impair.
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8.4 Opérations sur les D.L.

Théorème. Soient f et g deux fonctions dérivables n fois dont les DLn(0) sont notés :

f(x) = P (x) + xnε(x) g(x) = Q(x) + xnε(x)

1. Troncature : pour tout entier m inférieur à n, la fonction f admet un DLm(0)
obtenu en tronquant le polynôme P au degré m

2. Somme : pour tout réel a, la fonction f + ag admet un DLn(0) donné par

f(x) + ag(x) = P (x) + aQ(x) + xnε(x)

3. Produit : la fonction f × g admet un DLn(0) donné par

f(x)× g(x) = R(x) + xnε(x)

où R est le polynôme de degré au plus n obtenu en tronquant à l’ordre n le produit
P ×Q.

4. Composition : si g(x) → 0 quand x → 0, alors la fonction f ◦g admet un DLn(0)
donné par

f ◦ g(x) = R(x) + xnε(x)

où R est le polynôme de degré au plus n obtenu en tronquant à l’ordre n le produit
P ◦Q.

5. Dérivation : la fonction f ′ admet un DLn−1(0) donné par

f ′(x) = P ′(x) + xn−1ε(x)

6. Primitive : la fonction F , primitive de f , admet un DLn+1(0) donné par

F (x) = P(x) + xn+1ε(x)

où P est la primitive de P telle que P(0) = F (0).

Remarque. La propriété de composition peut s’interpréter comme une propriété de
changement de variable. Dans un développement limité, il est possible de remplacer x par
n’importe quel polynôme dont le terme constant est nul (ainsi la fonction g, qui est un
polynôme, tend bien vers 0 lorsque x tend vers 0).
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Exemple. On détermine grâce aux propriétés ci-dessus les DLn(0) des fonctions suivantes :

1.
1

1 + x
=

1

1− (−x)
, on remplace donc la variable x par −x dans l’exemple fondamental

1 (propriété de composition, on peut car −x → 0 quand x → 0). On obtient

1

1 + x
= 1− x+ x2 − x3 + . . .+ (−1)nxn + xnε(x)

2. ln(1 + x) est une primitive de
1

1 + x
, par passage à la primitive (on notera que

ln(1 + 0) = 0 donc le terme constant du DLn(0) est nul) on obtient :

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + . . .+

(−1)n+1

n
xn + xnε(x)

3. ln(1− x) = ln(1 + (−x)), on remplace donc la variable x par −x dans l’exemple
précédent (propriété de composition, on peut car −x → 0 quand x → 0). On obtient

ln(1− x) = −x− 1

2
x2 − 1

3
x3 − 1

4
x4 + . . .− 1

n
xn + xnε(x)

4. cos(x) =
eix + e−ix

2
d’après la formule d’Euler. On utilise les propriétés de somme et de

composition (on remplace x par ix et −ix dans le développement limité de la fonction
exponentielle), on obtient le DL à l’ordre 2n :

cos(x) = 1− 1

2!
x2 +

1

4!
x4 + . . .+

(−1)n

(2n)!
x2n + x2nε(x)

5. sin(x) =
eix − e−ix

2i
d’après la formule d’Euler. On utilise les propriétés de somme et de

composition (on remplace x par ix et −ix dans le développement limité de la fonction
exponentielle), on obtient le DL à l’ordre 2n+ 1 :

sin(x) = x− 1

3!
x3 +

1

5!
x5 + . . .+

(−1)n

(2n+ 1)!
x2n+1 + x2n+1ε(x)

Remarque.

— Lorsqu’on remplace x par −x, seuls les termes de degré impair changent de signe.

— Les exemples ci-dessus pourront être utilisés sans avoir à les redémontrer (i.e. ils sont à
retenir).
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8.5 Applications

En physique, par exemple, il est courant de remplacer une expression par son développement
limité (lorsque la variable à vocation à être petite et en prenant soin de choisir l’ordre du DL
tel que l’erreur soit inférieure aux erreurs autorisées par le contexte).

En mathématiques on utilise les développements limités afin d’obtenir des informations sur le
comportement de la courbe représentative de f au voisinage de zéro.

8.5.1 Calcul de limites

Théorème. Soit f une fonction admettant un DL0(0) : f(x) = a + ε(x). On a alors

lim
x→0

f(x) = a

Remarque. En pratique le développement limité à l’ordre 0 suffit, mais on rappelle que le
DL0 s’obtient par troncature de tout DLn à l’ordre zéro.

Exemple.

lim
x→0

sin(x)

x
= lim

x→0

x+ xε(x)

x
= lim

x→0
1 + ε(x)

= 1

8.5.2 Equation de la tangente

Théorème. Soit f une fonction admettant un DL1(0) : f(x) = a + bx+ xε(x).
La droite d’équation y = a+ bx est la tangente à la courbe de f en 0.

Remarque.

— En pratique le développement limité à l’ordre 1 suffit, mais on rappelle que le DL1

s’obtient par troncature de tout DLn à l’ordre 1.

— On peut obtenir la position relative de la tangente au voisinage de 0, en étudiant le
signe du premier terme non-nul, de degré strictement supérieur à 1, du DL de f .

— On peut généraliser le résultat précédent aux ordres supérieurs et obtenir les courbes
tangentes de degrés 2, 3, ...
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Exemple.
Le DL3(0) de la fonction f(x) = sin(x) est

sin(x) = x− 1

3!
x3 + x3ε(x)

Donc l’équation de la tangente à la courbe de f en 0 a pour équation : y = x.

De plus, au voisinage de 0, on a : f(x)− x = − 1

3!
x3 + x3ε(x).

Donc :
• pour x < 0, f(x)− x > 0 et la courbe de f est au-dessus de sa tangente en 0 ;
• pour x > 0, f(x)− x < 0 et la courbe de f est en-dessous de sa tangente en 0.
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