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Chapitre 1

Révisions sur le calcul intégral

1.1 Propriétés graphiques

Les propriétés suivantes permettent généralement de calculer tres rapidement une intégrale,
sans utiliser I'une des méthodes de calcul de la suite du chapitre.

1.1.1 Calcul de surface

Par définition le calcul d’une intégrale correspond a un calcul de surface « orientée ».

e Si f est une fonction positive sur [a, b] alors f; f(t)dt > 0 représente la surface entre la
courbe et ’axe des abscisses.

e Si f est une fonction négative sur [a, b] alors fab f(t)dt <0 représente (—1) fois la surface
entre la courbe et 1'axe des abscisses.

Exemple.

4
1. / 3dt =3 x4=12
0

0
2./ tdt:—<2X2):—2
~ 2




1.1.2 Parité

Théoreme.
Soit a un réel positif et soit f une fonction définie sur l'intervalle [—a, a].

e Si f est une fonction impaire alors / f(t)dt =0

e Si f est une fonction paire alors / ft)dt = 2/ f(t)dt
0

—a

Exemple.
1./ cos(t) sin®(t)dt

3
2. / t3 — 5t + 1dt

-3

1.1.3 Fonctions périodiques

Théoreme.
Soit T un réel positif et soit f une fonction T-périodique. On a alors

Va € R :(ATﬂwﬁ:i/HTﬂwﬁ

Autrement dit : le calcul de "intégrale de f sur une période ne dépend pas de la période
choisie.

On note alors f[T} f(t)dt Uintégrale sur une période.

Exemple.

1. / cos(2t)dt = /2 cos(2t)dt
0 —3
3 ™

2. / cos(2t)dt =3 x/ cos(2t)dt
0 0

1.2 Calcul de primitive

C’est la méthode de calcul n°1!

On vérifie si la fonction que 'on cherche a intégrer est d’un type connu.
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1.2.1 Formulaire

On renvoie au tableau 1.1 pour un résumé des primitives a connaitre par coeur. Les tableaux
suivants regroupent les primitives classiques a connaitre !

F(t) f(t)

F(t)

1 u'(t
i u(t)
1 u'(t)
t—n(neh\l,n#l) ()" (neN, n#1)
1 u'(t
Vi u(t
Ft) F(t) f(#) £(t)
cos(t) u’(t) COS(U(t))
sin(t) w'(t) sin(u(t))
et ' (t)er®
1 u'(t)
1+t 14 (u(t))?

FIGURE 1.1 — Primitives classiques
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u'(t)
u"(t)

(e eR etneN)

1.2.2 Reconnaitre et v/ (t)u"(t) avec u(t) = sin(at) ou u(t) = cos(at)

Pour calculer les fonctions du type (avec o € R et n € N) :

1. cos(at) sin™(at) 3 cos(at)
" sin”(at)
sin(at)
2. cos™(at) sin(at) 4. cos™(at)
Exemple.
1. /ﬂ cos(t) sin’(t)dt 3. /W/2 cos(t) dt
0 w/3 sin ()
T sin(2t)
2. /0 sin(3t) cos(3t)dt 4./0 cos3(2t)dt
P(t)

1.2.3 Reconnaitre avec P un polynéme (n € N)

P (t)
Cette méthode peut s’appliquer lorsqu’on a un quotient de polynomes du type % et que
deg(Q) = deg(P) — 1. 1l faut essayer de faire « apparaitre » P’ au dénominateur.

Exemple.

24249 2 t+1
P'(t)
1+ P2(t)

On utilise en particulier cette technique pour calculer les intégrales de fonctions du type

1.2.4 Reconnaitre avec P un polynome

1

m&VeCA:b2—4CLC<O
a
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Exemple.
1 1
1 2
1. —dt 3. ———dt
/0 241 /0 482 + 1
L ! 1
2, / dat 4 / L g
o 244 o t2—2t+3

1.3 Fonctions polyndomes en sinus et cosinus : Linéarisation

Pour calculer les intégrales de fonctions du type (avec (o, ) €R? et (n,m) € N?) :

cos” (at) sin™ (ft)

/A Commencer par vérifier si on connait une primitive de ces fonctions (voir la méthode 1.2)!

Remarque. Remarquons que si a = et sin =1 ou m = 1, alors on connait une primitive
des fonctions du type cos(at)sin™(at) et cos™(at) sin(at) (voir la méthode 1.2)!

e Méthode :

On linéarise en utilisant les formules d’Euler :

ezt + 6—zt ezt _ e—zt

cos(t) = 5 sin(t) = 5

Exemple.
1. / cos®(t)dt 3. / cos(4t) cos(2t)dt
0 0
2. / cos(3t) sin(t)dt
0

1.4 Fractions rationnelles : D.E.S.
P(t)

Pour calculer les intégrales du type ——= avec P et () deux polynomes.

Q(1)

A\ Commencer par vérifier si on connait une primitive de ces fonctions (voir la méthode 1.2)!
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Remarque. Pour les fractions rationnelles du type :

P'(t) P'(t)
1. N 2. —————
1) (avec n € N) P00 + 1
on applique la méthode 1.2!
e Méthode :
. . " : P(t)
On effectue la décomposition en éléments simples de W
Exemple.
3 4
2 t+2
1. dt 3. ————dt
/2152—1 /3t3—4t2+4t
342 4
t+1
2./t+1dt 4./ L —
g t—1 s (P+1)(t+2)

Pour résumer, la DES conduit a intégrer 4 types d’éléments simples :

ler type : la partie entiere. C’est un polynome!

2éme type : —— qui s’integre en In [t + o
t+ «
3eme t L (avecn > 1) qui sinté Lo\
éme type: ———— (avec n ui s’'integre en —
yp (t+a)" q & l—-n\t+a
. At+ B 9 , . . N
4éme type : ———— (avec A = b* — 4ac < 0). On sépare la fonction en deux parties de maniere
at? + bt + ¢ W n
u(t u'(t
a faire apparaitre d’une part et ————— d’autre part.
bp u(?) P (w(t)?+1 P

1.5 Intégration par parties (I.P.P)

Théoréme (Formule d’intégration par parties). Soient u et v deux fonctions dérivables
sur un intervalle [a, b] telles que leurs dérivées sont continues sur |a,b]. Alors :

/\ Il faut bien choisir quelle fonction on integre et quelle fonction on dérive de fagon a se
ramener a une intégrale plus simple!
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Remarque. Il existe un moyen mnémotechnique pour choisir quelle fonction intégrer et quelle
fonction dériver :

Arctan Log Poly Exp Sin

On dérive la fonction la plus a gauche.

Exemple.
1 1
1. / et +1)dt 3. / (2t — 3) cos(rt)dt
0
03
2. / 2 In(t)dt
2

1.6 Changement de variable

Théoréme (Formule de changement de variable). Soit f une fonction continue et ¢ une

fonction bijective dérivable sur un intervalle [a,b] telle que ¢’ est continue sur [a,b].
Alors :

b »(b)
/ Fo®) (B)dt = / F(t)dt
a v(a)

Remarque. Lorsqu’on fait un changement de variable dans une intégrale il faut modifier les 3
éléments qui la définisse :

e Les bornes

e L’expression de la fonction

e Le «dt »

Par ailleurs, on veillera a ne jamais avoir une intégrale ou apparaissent les 2 variables
simultanément !

Exemple.

4
1
1./ dt on pose x =/t
o 1+t
1
2. / V1 — t2dt on pose t = cos(x)
0
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Chapitre 2

Suites et séries numériques

2.1 Suites numériques

2.1.1 Vocabulaire et notations

Définition (Suite numérique).
On appelle suite numérique une fonction définie sur N a valeurs dans R ou C :

f N —- R

n = f(n)

On note généralement :
u : N — R
n o= U,

et on dit que u,, est le n-ieme terme de la suite (u,)nen-

Définition (Suite explicite/récurrente).
> On dit que la suite (u,),en est explicite, si on a une expression de u,, en fonction
den :u, = f(n)

> On dit que la suite (uy)nen est récurrente (d’ordre 1), si on a une expression de uy,
en fonction du terme précédent : u, = f(u,_1)

Exemple.

1. u, = 2n + 3 est une suite explicite. Avec
U =2x0+3=3 w3 =2x1+3=5 uy=2x2+3=7

13



2. u, = 2" + 3 est une suite explicite. Avec

u=243=4 uy=2'43=5 wuy=224+3=7

3. Upy1 = 2u, + 3 avec uy = 3 est une suite récurrente. Avec

UO:?) u1:2><u0—|—3:9 UQZQXU1—|—3:21

4. Upiq = 2" + 3 avec ug = 3 est une suite récurrente. Avec

up=3 u3 =2"+3=11 wuy=2""+3=2051

Définition (Suite arithmétique).
On appelle suite arithmétique de raison r € R une suite qui vérifie Vn € N,

Upt1 = Uy + 7 (forme récurrente) ou wu, = ug + nr (forme explicite)

Exemple.
1. upi1 = uy, + 4 est une suite arithmétique de raison r = 4
2. Upy1 = 3 — 2n est une suite arithmétique de raison r = —2 et de premier terme ug = 3

3. Upyp = %n est une suite arithmétique de raison r = % et de premier terme ug =0

Définition (Suite géométrique).
On appelle suite géométrique de raison g € R une suite qui vérifie Vn € N,

Upt1 = Uy X ¢ (forme récurrente) ou wu, = ug X ¢" (forme explicite)

Exemple.
1. upy = 4u, est une suite géométrique de raison q¢ = 4
2. Upy1 = 3 X 2™ est une suite géométrique de raison r = 2 et de premier terme ug = 3

3. Upy1 = 3% est une suite géométrique de raison r = é et de premier terme uy = 1
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2.1.2 Limite d’une suite

Définition (Suite convergente/divergente).
On dit que la suite (u,)nen est :
> convergente lorsque u,, admet une limite finie en +oo, c’est a dire : liril Up = C,
n——+0o0
ouc € RouC.

> divergente lorsque la suite n’est pas convergente.

Exemple.

1. lim 2" = +o00 donc la suite u,, = 2" est divergente.
n—-+o0o

2. lim 1— 2 =1 donc la suite u,, = 1 — 2 est convergente.
n—-+o0o n n

3. La suite u,, = (—1)" n’admet pas de limite en 400 car elle oscille entre —1 et 1. Cette
suite est donc divergente.

Remarque.
Lorsqu’on étudie la convergence d’une suite, c’est toujours en +oo! Faire tendre un nombre
entier n vers 0 (ou tout autre valeur finie) n’a aucun sens.

Théoréme. Soit (uy)nen une suite arithmétique de raison r.
> Sir =0 alors (un)neN est constante et converge vers ug.

> Sir #0 alors (uy)nen diverge.

Théoreme. Soit (uy)nen une suite géométrique de raison q¢ € R ou C.

lim w,=0 < J|g/<1 ou uy=0

n—-+o0o

Remarque.
Si g € R, |g| désigne la valeur absolue de ¢. Si g € C, |q| désigne le module de q.

Exemple.
1wgﬂﬁ%xﬂJW:+mcmq:Ll>l
2. HETOO(%)n:Ocarq:%<l
3. ngrfw3 x (—3)"=0carlg=1%<1
4. ngrfw <1+§/§i)n =0 car |¢| = 12+(\/§)2 =2<1
5. ngrfoogﬁ—z =0 car ?,’zi: = <§—2)n dou |¢| =§ <1

15/76



2.1.3 Somme des termes d’une suite

Définition. Soit (u,)nen une suite et soit N € N*. On note SV u, la somme des N
premiers termes de la suite :

N
Zun:ul—l—uQ+U3+---+uN

n=1

Remarque.
Dans certains cas, la somme ne commencera pas a l'indice 1. La somme des termes d’indices

: N
compris entre ng et N se note ), .

Exemple.

L3S0 n=1+2+3+4+5
2. 30 2 =21 422423 4 o

Théoréme. Soient (a,)nen €t (bp)nen deux suites.
> ZnN=1(an +by) = ZnNzl an + ZnNzl bn
>VYAER, N (M) =AY a,
>VAER, N A=AN

Théoréme. Soit (uy)nen une suite arithmétique. On a :

N
N +1
UO+U1+"'+UN:ZUk:(uO+UN)X 5
k=0
et plus généralement
N N—n0+1
5y (e D

k=ng

Remarque.
Il ne faut pas retenir ces formules mais plutot :

nombre de termes
2

Somme des termes d’une suite arithmétique = (premier terme+dernier terme)x
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Exemple.
> 32
1. —4dn = (0—-124) x — = —1984

16
16—2+1
2. ZB+2n:(7+35)x%:315

k=2

Théoréme. Soit (u,)nen une suite géométrique de raison q. On a :
N 1— gN+!
u0+u1+-~-+uN:Zuk:uo>< 1_q
k=0
et plus généralement
N 1 — gN-no+1
S =gy 30 A
l—gq
k=ng

Remarque.
Il ne faut pas retenir ces formules mais plutot :

1— I'aiSOl'lnombrC de termes
Somme des termes d’une suite géométrique = premier terme x -
1 — raison
Exemple.
31 1 _ 932
D 3x2"=3x — =322 -1)
k=0

2.2 Séries numériques

2.2.1 Définitions et premieres propriétés

Définition. Soit (u,),>0 une suite de nombres réels ou complexes. La série de terme
N
général u,, est la suite des sommes partielles Sy = g Up = Ug + U + U + -+ -+ Up.
k=0
—+00
Cette série se note S = E Up, OU Y U,
n=0
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Exemples.

1. La série de terme général une suite arithmétique de raison 2 et de ler terme 3 est
> 2n+ 3.

2. La série de terme général une suite géométrique de raison % et de ler terme 3 est ) 2%

Définition. On dit que ) u,, converge, lorsque la suite (.5,,) a une limite finie. Dans ce
cas, cette limite est la somme de la série.

“+oo n
S:E un(:)S:limg Uy,
n—00
n=0 k=0

Dans le cas contraire, on dit que la série est divergente.

Exemples.
1. > 1 diverge. 2. 3" 2n diverge. 3. 3 (3)" converge.
“+oo
Remarque. La convergence de la série Z u, ne dépend pas des premiers termes de la suite
n=0
(un)nZO-

Théoréme (Séries géométriques).
Soit ¢ € C. On a le résultat suivant :

Zq"converge < gl <1

—+o0
1
Lorsque la série converge n—_
q 9 ,gégq T
Exemples.
+o00 n .
2. )" diverge.

1. Z e " converge. 2. (3) &

n=0

Théoreme. Si E u, converge, alors lim wu, =0
n—-+o0o

Attention, la réciproque de cette proposition est fausse!!
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Remarque. On utilise la contraposée du théoreme précédent pour montrer qu’une série

diverge
Si nl—lgloo u, #0 alors Zun diverge
Exemples.
1. Y (=1) x n diverge. 2. Y nsin () diverge.

Théoréeme. Soient (u,) et (v,) deuz suites de nombres réels.
1. 80> u, et > v, sont convergentes alors Y (u, + v,) est convergente.

2. Si > u, converge ety v, diverge alors  (u, + v,) est divergente.

Méthode pratique de calcul de somme : téléscopage
Si la suite U,, peut s’écrire : U,, = a,, — a,+1 alors

N
E U,=a —ayn

n=1
Exemple.
Soit U, = ——.
“ n(n+1)
On peut écrire : U, = + — — (D.E.S.).
A 1
Par télé ; —=1-—
ar téléscopage ; Py Nl
=1 1
Et d —— = lm 11— ——=1
one ; n(n+1) N3 4o N+1
+00 1
Donc la série nzzzl m converge vers 1.

2.2.2 Criteres de convergence des séries numériques positives

Series de Riemann

Théoréme (Séries de Riemann).
Soit a € R. On a le résultat suivant

1
Z — converge < o > 1
na
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Exemples.

1. > L diverge. 2. 3 25 converge. 3. ﬁ diverge.

Les théoremes de comparaison

Théoreme. Soient (a,) et (b,) deux suites réelles, positives et telles que 0 < a,, < b, a
partir d’un certain rang. Alors :

Z b, converge = Z a, converge

Z a, diverge = Z b, diverge

Exemples.

1
= 1 1
1. La série E R converge, car 5 < 7.

Théoréeme. Soient (a,) et (b,) deux suites réelles, positives et telles que ay, o~ b,. Alors

Zan et an sont de méme nature.

Exemples.

n n
1. > R2nT) CONVEIBE CAl ooy ~ o,

2. > sin <2in) converge car sin <2in) ~ o
+o0o

1
~Y —.
n

—+00

3. > In <1 + %) diverge car In <1 + %)
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Chapitre 3

Série de Fourier

Le but de ce chapitre est de :

e Représenter un signal T-périodique comme une somme de fonctions trigonométriques :

s(t) = >.7%0 a, cos(nwt) + by, sin(nwt)

e Retrouver un signal temporel a partir des spectres d’amplitude et de phase

e Utiliser les séries de Fourier pour calculer des sommes de séries et des intégrales
généralisées

3.1 Signaux périodiques

3.1.1 Préliminaires

Définition. Soit f : R — R une fonction. La fonction f est dite C' par morceaux sur
[a, b] lorsque f et f’ sont continues par morceaux sur tout segment de [a,b] (c’est & dire
continues partout sauf éventuellement en un nombre fini de points et f et f’ admettent
une limite a gauche et a droite en ces points).

Exemple.
La fonction définie par :

P
Y

9

est C! par morceaux sur l'intervalle [—3, 4].
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Définition. Une fonction est dite T-périodique lorsque, pour tout t € R,

fA+T) = f{t=T) = f(t).

27
Lorsque T est la période d’un signal, la pulsation w est le nombre w = —

\
< //\ _ /\ ' Z 2xamplitude

période T

Définition. On appelle valeur moyenne d’un signal périodique de période T :

_ 1
V—;Aﬁ@ﬁ

On appelle valeur efficace d’'un signal périodique de période T :

2 _ l 2
V=g [ Gy

3.1.2 Amplitude et phase

Théoreme. Soit un signal périodique de pulsation w défini par :
s(t) = acos(wt) + bsin(wt).
Alors s(t) s’écrit sous la forme :
s(t) = Asin(wt + )

avec A est Uamplitude et ¢ est la phase a ’origine. Avec :

SN

cos(p) =

A=+va?+ b2 et

sin(ip) =

| e
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Exemple.
Trouver la phase et 'amplitude du signal s(t) = /3 cos(2t) + sin(2t)

D’apres le théoreme précédent, on a A = 1/(v/3)2+12 =2 et

cos(p) =

w

1
2
V3

sinp) = 5

On en déduit que ¢ = g, et donc s(t) = 2sin (215 + g)

Définition. Soit un polynome trigonométrique défini par les n harmoniques :
s(t) = ag + ay cos(wit) + by sin(wit) + - - - + a,, cos(wyt) + by, sin(wyt).

En regroupant par périodes (ou par fréquences), on obtient la suite
(wo, Ao, ©0) - - - (Wn, An, @n) décrivant les amplitudes et les phases des harmoniques
du signal temporel s(t).

On appelle spectre d’amplitude le graphique formé des points (w,,, A,,).
On appelle spectre de phase le graphique formé des points (wy, ©,).

Remarque. Le terme a correspond a la valeur moyenne et peut étre représenté en n = 0 sur
le spectre d’amplitude.

Exemple.
On considere le signal temporel donné par

s(t) = cos(t) + V3 cos(2t) + sin(2t) + sin(3t) + cos(4t) — sin(4t)

Les spectres de phases par rapport au sinus et d’amplitudes du signal s sont
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AAmplitude

3.0
2.5 1 3 /4
‘ 2 APhase

2.0 1

/2

15 | /2 1.570

o 1 1 /3

' 0.785

0.5 1 0 "
-6 5 T $ T * T > $ —
950 0510 152025303540 45 6-050 0.51.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
' 0.785 |

1.0 |

3.2 Coeflicients de Fourier

Dans la suite, f : R — R désigne une fonction définie T-périodique et continue par morceaux.

3.2.1 Calcul des coeflicients de Fourier

Définition. On appelle coefficients de Fourier trigonométriques de la fonction f les
nombres réels suivant :
/f F(t)dt

Vn € N* a,(f) = f(t) cos(nwt)dt
T

2
T ]

VneNﬁmU%:g/‘ﬂOQMm@ﬁ
(T

~

\

avec [T désigne un intervalle de longueur 7" et w = 27

Exemple.
On considere par exemple le signal temporel carré défini par

s(t) =

Osi0O<t<m
lsim<t<2rm

et périodique de période 27.
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Apres calcul, on trouve :

1
ap(s) = 5
Vn € N, a,(s) =0
Ve N*, by (s) = D T
™m

Remarque. On peut montrer que ¥n € N* : sin(mn) = 0 et cos(mn) = (—1)"

Parfois, il est plus facile de passer dans les complexes pour faire les calculs et ¢’est pourquoi
on introduit les coefficients de Fourier exponentiels.

Définition. On appelle coefficients de Fourier exponentiels de f les nombres complexes
suivant :

Vn € Z,en(f) = % /m FE)emet .

Exemple.
Calcul des coefficients de Fourier exponentiels de la fonction 1-périodique qui vaut exp x dans
[0;1] :

1
YnelZ, ¢, = /exe_QZ”"xd:B
0

1
— / e(l—2i7rn)xdx
0

1 . 1
— (1-2imn)x
1—2imn [e }0
= ) |
— (1—-2imn) __
2 € Y
o
= T Y
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3.2.2 Propriétés des coefficients de Fourier

Théoreme. Soit f une fonction T-périodique continue par morceau.

e Si f est paire, alors pour tout n € N* on a

) T/2 4 T/2

b, =0, ag= T ), f(t)dt et a, = T ), f(t) cos(nwt)dt

e 5i f est impaire, alors pour tout n € N* on a

T/2
ap=0, a,=0 etb,= —/ f(t) sin(nwt)dt
0

Exemple.
Calcul des coefficients de Fourier du signal triangulaire f suivant :

Puisque f est paire, alors pour tout n € N*, on a b, = 0,
1

1 2
t 1
a0:/ —t+1dt:[——+t] ==
0 2 7, 2

et (par intégration par parties)

a, = 2/01(—15—1— 1) cos(nmt)dt = 2 {(—t—i— 1)M]1 +2/01 Mdt =2 [

nmw nm

1- (="

Ay, = 2
m2n?

— cos(nmt)

n2m?

)
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Théoreme. Soient f et g deux fonctions continues par morceauz, périodiques de méme
période, et A € R

1. an(f + Ag) = an(f) + Aan(g) €t bu(f + Ag) = bu(f) + Abu(g)
2. Si de plus, f est continue sur R et C' par morceaux, alors pour n € N*

an(f') = nwbn(f) et bn(f') = —nwan(f)

3. ** lim |a,| = lim |b,| =0
n——+00 n——+00

Exemple.
Le signal triangulaire précédent étant continu et C! par morceaux, on peut obtenir, grace aux
calculs précédents, les coefficients de Fourier de la fonction représentée par

A
— ———

P
Y

—1

Nous allons maintenant faire le lien entre les coefficients de Fourier exponentiels et les
coefficients de Fourier trigonométriques.

Théoreme. Soient f et g deux fonctions continues par morceaux, périodiques de meéme
période, et A € R

1. Sig(t) = f(t—7), alors c,(g) = exp™ ™7 ¢, (f).

20, — % (an — iby,)
3. ag=Cy, Gy =Cp+C_py=Cp+¢, etb, =1i(c, —Cy).
4. an = 2Re(cy) et b, = —2Im(c,).
5. %% lim |e,] = 0.
n——+00
Exemple.
Soit la fonction 1-périodique qui vaut exp x dans [0; 1[. On a vu que :
1
p= (e~ 1
e = T g ¢ Y
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Donc on trouve les coefficients de Fourier trigonométriques de f :

an:( ! + L )(6_1) 2e—1)

1—2imn 14 2imn T + 472n2

bn:z'( L L )(6_1): dmn(e — 1)

1—2imn 14 2imn 1 4 4m2n2

Ce calcul aurait été plus long en calculant directement les coefficients trigonométriques...

3.3 Seérie de Fourier

Définition. Pour tout N € N*, on note SJ[CN} la somme de Fourier partielle d’ordre NV,
définie pour tout t € R par

N N
SJ[[N] (t) = ap + Z(an cos(nwt) + b, sin(nwt)) = Z c(n)e~ et
n=1 he_N

Exemple.
Reprenons le signal triangulaire f dont nous avons précédemment calculé les coefficients de
Fourier :

4
[« )
-
\

ol (D"
SJ[IN} (t) ==+ 22 3 cos(nt)
n=1

Définition. La série de Fourier d'une fonction f converge en ¢ si lim Sy[f](¢) est finie.

N—+o0
On note alors cette limite S[f](t).
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Théoréme (Dirichlet).
Soit f une fonction T-périodique, C* par morceauz. Alors, pour tout t € R, S}N}(t)

converge et
)+ F(7)

Si(t) = >
avec f(t7) = lim f(x) et f(t7) = lim f(z).

Remarque.
— Lorsque f est continue en ¢, on a f(t7) = f(t7) et donc Sy(t) = f(¢) .
— Le théoreme de Dirichlet s’interprete graphiquement par : les courbes des séries de
Fourier partielles SJ[KN} tendent a ressembler a la courbe du signal f lorsque N tend vers
I'infini. Par ailleurs, lorsque f admet un saut en ¢, alors la courbe de S ][cN] passe par la

valeur moyenne avant et apres le saut de f.

Exemple.

On reprend 'exemple de la fonction créneau étudiée précédemment. On a tracé sur le graphe
ci-dessous différentes sommes partielles

Définition. Lorsque 'on a calculé les coefficients de Fourier d’un signal périodique f, le
graphe des amplitudes de la série de Fourier défini par n — A,, = /a2 + b2 = 2|c,| est
le spectre de f.

Remarque.

— Pour n = 0 on représente la valeur moyenne ay.

— Le spectre de f permet de voir les termes qui comptent dans la série de Fourier : si A,
est grand, le terme d’ordre n compte beaucoup, et si A, est petit, le terme d’ordre n
compte peu.

— D’apres les théoremes précédents, les amplitudes des harmoniques tendent vers 0.
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Exemple.
Considérons la série de Fourier du signal triangulaire du début du chapitre :

Se(t) = % + Z 2ﬂ cos(nt)

2072
TN
n=1

Le spectre (d’amplitude) des premiéres harmoniques de f est donc

0.5

4/m?

4/(3m)*  4/(5m)*  4/(7m)?

I i ' >

g > >

—-0.50 0.51.01.520253.03.54.04.55.05.56.06.57.07.58.08.5

3.4 Le théoreme de Bessel-Parseval

Définition. Soit f une fonction T-périodique. On appelle énergie moyenne de f la quan-
tité ]
B =7 [ 110l
T Jmy

Remarque.
L’énergie moyenne est égale au carrée de la valeur efficace du signal : F(f) = fo ;-

Théoreme. Soit f une fonction T-périodique, continue par morceauz. Alors :

1
_ 2 2 2
Euy_%+§§:%ﬁww

n>1
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Exemple.
Considérons la série de Fourier du signal en créneaux du début du chapitre :

Se(t) = 1 + Z 2ﬂ cos(nmt)

m2n?
D’apres le théoreme de Parseval, 1’énergie moyenne vaut

1\° 1R /.1-(—D)m\?
2 - _§ -\ -
Verr = <2> * 2 « (2 m2n2 )

n=

En calculant les 7 premiers termes de la somme on obtient
2 ~Y
Vi~ 0.3333074

Par ailleurs il est possible de calculer directement I’énergie moyenne :

v?—l/qmwﬁ—l/%—Uwa
T, 2 -3
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Chapitre 4

Produit de Convolution

4.1 Signaux classiques

4.1.1 Echelon, porte et triangle

Les fonctions suivantes sont des fonctions de références, qui interviendront de maniere
récurrente dans ce chapitre et les suivants.

Définition.

1. La fonction échelon unité est définie sur R par

Ulz) = OsTx<O
1six>0

2. La fonction créneau unité, appelée aussi fonction porte, est définie sur R par

lsiz e L1
siz e |—=;=
II(x) = 2’2

0 sinon
3. La fonction triangle est définie sur R par

r+1sixel—1;0];
A(z) = —z+ 1siz €)0;1]

0 sinon
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4.1.2 L’impulsion de Dirac

Soit € > 0. Considérons une fonction II., définie par

1 'te[ e'e}
ML) ={e 272

0 sinon

J
1/€

—€/2

)

/2

Remarque. Plus € est petit, plus le support de la porte est petit et plus 'amplitude est
grande. Cependant, quelque soit la valeur d’e I'intégrale de II, sur R vaut toujours 1.

0 et que I'on notera ¢.
0(t) = im I1.(¢)

e—0

On note [ d(t) son poids qui, par définition, vaut 1.
L’impulsion de Dirac vérifie (propriétés admises) :

(6(t) =0sit#£0

/ﬁmag):1

00
“+oo

LS (#) x6(t) = f(0) x &(t)

Définition. On appellera impulsion de Dirac la limite des fonctions I, quand € tend vers

f(@)d(t) = f(0) si f continue en 0

Remarque. Ceci n’est pas cohérent avec ’analyse « classique ». On utilise ici la théorie des

distributions que nous n’allons pas développer ici.
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La représentation de I'impulsion de Dirac se fait avec une fleche dont la hauteur représente le
poids de la distribution :

1.0 5(t)

0.5

P
S

-1.5 -1.0 —-0.5 0:5 1.0 1

—-0.5

Théoréme. Soit T un nombre réel. L’impulsion §(t — T) est une impulsion de Dirac de
poids 1 et retardée de T.

A

L0 5(t)
0.5 1

-1.5 —-1.0 -0.5 0.5 1.0
—0.5

Pour tout signal f, on a :

ft) xd(t—71) = f(r) xd(t —71)

Autrement dit, le produit d’une fonction par une impulsion retardée de T est égal a une
impulsion retardé de T et de poids f(7).
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Remarque. On utilise ainsi une somme d’impulsions espacées régulierement pour effectuer
I’echantillonnage d'un signal :

N

F(£) x Y 6t — kT.)

k=n

ou 7, est la période d’échantillonnage.

A

1.0

0.5 1
N\ =
1.5 -1.0 05 0~5M 1.5 —=1.0 —0.5 0.5 1.0 1.5 —=1.0 —0.5
—0.5 1 —0.5 —0.5
signal f « peigne » d’impulsions signal échantillonné

4.2 Le produit de convolution

4.2.1 Définition

On rappelle que

+0o0
Définition. Une fonction f est dite intégrable sur R lorsque, pour tout a € R, / f(x)dz

et / f(x)dz convergent.

1

T 1r h(t) = sin(t). Les fonctions f et g sont intégrables,

Exemple. f(t) = e 'U(t), g(t)

mais pas h.

Définition. Soient f et g deux signaux intégrables sur R. On appelle produit de convo-
lution de f par g la fonction notée f x g et définie sur R par

+oo

frg(t)= f(x)g(t — x)dz.

Remarque. Le produit de convolution peut exister sans que f et g soient intégrables. La
condition énoncée ci-dessus donne une condition suffisante d’existence de f * g, mais pas
nécessaire.
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Exemple.
Soient f et g les fonctions définies par : f(t) = e "U(t) et g(t) = U(t). On a alors
+oo
Fra®) = [ foglt- o) (4.1)
+oo
= / e "U(x)U(t — x)dx (4.2)
v
= / e dx (4.3)
0
et
- [_6 }o (
= 1—¢"

Le passage de la ligne (4.2) a la ligne (4.3) n’est valable que pour ¢t > 0. Donc la fonction
f * g est causale :

frgt)=(1—eU(t)

Théoreme. Le produit de convolution de deux fonctions causales est causal et, dans ce

cas, on peut écrire f * g(t) = /Ot f(z)g(t — x)dald(t)

4.2.2 Propriétés

La démonstration de chacune (sauf **) de ces propriétés élémentaires est exigible. . .

Théoreme. Soient f, g, h trois fonctions telles que chacun des produits de convolution
considérés existent, et X € R.

1 fxg=gxf

2. fx(g+h)=fxg+fx*h

8. fx(Ag)=(Af)*xg=A[*g)

4. [x(gxh)=(f*xg)xh=fxgxh™™

Théoréme. Soient f, g deux fonctions de classe C' par morceaux telles que chacun des
produits considérés existent, et soit T € R. On note f, la fonction retardé de T (i.e.

fr@)=f(t—7)). Ona
(fr*xg)=f*g-=(f*9):

Si de plus f est continue sur R, on a alors :

frrg=(frg)
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4.2.3 Interprétation graphique

Lorsque t est fixé, le produit de convolution de f par g peut étre interprété comme la

moyenne de f a l'intérieur d'une fenétre « glissante » dont la position est donnée par t.

Par exemple, le produit de convolution II  IT (qui se calcule aussi directement) peut

s’interpréter de la fagon suivante :

— Le graphe de x — II(t — z) s’obtient & partir de celui de x — II(x) par symétrie par

rapport a 'axe (Oy), puis par un retard de ¢

— Pour ¢ fixé, la valeur de IT x II(¢) est donc la valeur de 'aire de 1’éventuel rectangle

« commun >»

1(t — ) 11I(x)

Tt 0 1

On obtient donc

4.3 Exemples fondamentaux

4.3.1 Convolution par I’échelon

I(t — x)

vvvvvvv

\]

Théoreme. Soit f une fonction intégrable. Alors,

s0 = [ s

4.3.2 Convolution par une porte

Théoreme. Soit f une fonction intégrable. Alors,

t+3

(Fem® = [ fads

t—

N
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4.3.3 Convolution par un Dirac

Théoreme. Soit f une fonction intégrable. Alors,

(f *0)(t) = f(?)

+o0o
Démonstration. On a (f x)(t) = (6 * f)(t) = O(x)f(t —x)dx = f(t) d’apres la défintion
de § (car f; : x — f(t — x) s’annule pour ¢t = :1:)_ O
Remarque. § est 1’élément neutre pour le produit de convolution.
4.4 Application
4.4.1 Formulaire
Fonction | Transformée de Laplace Fonction | Transformée de Laplace
1 1
Ut - Y (¢
0 . Ut —
1 1
tU(t — te YU (t
(t) o (t) TEAE
U " cos(wtU(?) '
(t) e P2 + w?
w
i t)U(L
sin(wt)U(t) PR
4.4.2 Transformée de Laplace
On note £ la transformée de Laplace.
Théoreme. On a :
Ls(p) =1
Démonstration. Ls(p) = [7275(t)e P'dt = 1 car t + e " vaut 1 pour ¢ = 0. O
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Théoréeme (Admis). Si f et g sont deuzx fonctions causales, admettant chacune une trans-
formée de Laplace. Alors, on a :

Lig(p) = Ly(p) X Ly(p)

Exemple.
1
Pp+1)
2p
(p+1)?

1. Calcul de la transformée de Laplace inverse de

2. Calcul de la transformée de Laplace inverse de

4.4.3 Fonction de transfert

Soit un circuit électrique correspondant a un systeme entrée/sortie linéaire. La sortie s(t) est
« liée » a lentrée e(t) par une relation différentielle.

e(t)

A Taide de la transformée de Laplace, on obtient une relation du type

S(p) = H(p)E(p) (4.6)

ou S(p) et E(p) sont les transformées de Laplace de s(t) et e(t).
Par transformée de Laplace inverse, on en déduit alors que la sortie s(t) est le produit de
convolution de h(t) avec e(t) :

s(t) = (hxe)(t)
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Par ailleurs, lorsque le signal d’entrée est I'impulsion §(t), sa transformée de Laplace E(p)
vaut 1, et donc la relation (4.6) devient S(p) = H(p).

Finalement, on obtient le résultat suivant :

Théoreme. L’expression temporelle d’un signal s(t) obtenu par filtrage par un filtre li-
néaire d’un signal e(t) est
s(t) = (ex h)(t)

ot h(t) est la réponse impulsionnelle du systéme.
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Chapitre 5

Transformeée en Z

Le but de ce chapitre est d’avoir un équivalent de la transformée de Fourier/Laplace adapté
aux signaux numériques discrets.

5.1 Echantillonnage

Définition. Soit f une fonction définie sur R et soit 7T, un réel strictement positif.
On appelle signal échantillonné associé a f la suite de nombres réels

n € Zw— f(nT,).

Le réel T, est la période d’échantillonnage.

A

\

Remarque. Le choix de la période d’échantillonage est important, et ne donne pas toujours
7
une bonne représentation du signal continu (par exemple, T, = 5 pour la fonction sin)
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Exemples.

1. Le signal rampe z(n) = nld(n) est obtenue par échantillonnage de la fonction définie
par f(t) =t avec une période de 1.

2. Soit un signal exponentiel f défini par f(t) = e *U(t). Pour la période
d’échantillonnage T', Péchantillonné est x(n) = e=*"TU(n) = (e=*T)"U(n) (c’est une
suite géométrique).

5.2 Transformée en Z d’un signal causal

5.2.1 Définitions

Définition. Un signal x est discret lorsque ses valeurs sont en bijection avec Z, c’est-a-dire
que l'on peut désigner ses valeurs par une suite (z(n)),ecz.
Il est causal lorsque z(n) =0, Vn < 0.

Remarque. Un signal échantillonné est donc un signal discret.

Exemples.
1. z(n) = d(n)
2. x(n) =U(n)
3. x(n) = nl(n)

Définition. On appelle transformée en Z du signal discret causal = la fonction de la
variable complexe z définie, pour toutes valeurs de z telles que la série converge, par :

X(z)= > a(n)z" =) z(n)z"

Remarque. On notera parfois la transformée de z(n) par Z(z)(z) ou encore Z,(z).

Exemples (Fondamentaux).
1. z(n) =d6(n) = X(2) =1

n J0]1]2[3[4]5...
a(n) [1[4]6[4[1]0...

2.

= X(z)=1+42'+622 44234+ 2= (1+z1)14
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4 2(n) = a"U(n)Va € R* — X (2) = ——
. x(n)=a"U(n)Va Z) = —-
1—az"!
51

Remarque. Chacune des transformées en Z des exemples précédents n’existe que sur une
partie de ’ensemble des nombres complexes, appelée domaine de convergence. On peut voir,
par exemple, lorsque on démontre I'exemple 3, qu’il est nécessaire d’avoir |z| > 1 pour que la
transformée en Z converge.

5.2.2 Domaine de convergence

La transformée en Z est définie par une somme infinie. Il est donc nécessaire de connaitre
I’ensemble des complexes z tel que la série converge. Pour cela, nous allons utiliser différents
criteres de convergence des séries numériques.

Regles de Cauchy et de D’Alembert

Théoréme. Soit (u,) une suite.

1. Critére de Cauchy : On suppose que liIP V|uy| = L. Alors, > u, est :
n—-—+0oo

convergente si L < 1
divergente si L > 1.

Up+1
U,

2. Critere de D’Alembert : On suppose que lim = L. Alors Y u, est :

n—-+o0o

convergente si L < 1
divergente si L > 1.

Remarque. Lorsque L = 1, on ne peut rien en déduire quant a la convergence de la série.

Exemples.
1
n 2n+1\"[* 2
2n+1 . n Y B
Bl e 1 (22 3
nl i : Uppr| . (n+D)0 20 n41
2. Z on leerge car n1—1>I.|1:loo w = HEI_POO TS py — nl_liil:loo — 400> 1
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Criteres de convergence appliqués a la transformée en Z

D’apres le critere de D’Alembert :

Théoreme. Soit x un signal discret causal et soit X sa transformée en Z.

1
On note r = lim M’
n—4o0o 1’(71)
“+o0o
X(z) = Zx(n)z_” converge ssi |z| >
n=0

On obtient un résultat similaire avec le critere de Cauchy :

Théoreme. Soit x un signal discret causal et soit X sa transformée en Z.
On note r = lir}rﬂ V|z(n)]
n—-+0oo

+o0o
X(z) = Zx(n)z‘” converge ssi |z| > r

n=0

Exemple.

+oo
Le domaine de convergence de X (z) = an_" est |z] > 1.
n=0

Remarque.
Tant que le signal est “négligeable” par rapport a une suite géométrique, le domaine de
convergence sera |z| > 1.

5.3 Propriétés des transformées en Z

5.3.1 Linéarité

Théoréme. Quels que soient (z(n)) et (y(n)) deuz signauz discrets et (a, 3) € C?
Z(ox + By) = aZ(x) + BZ(y).

Le domaine de convergence de Z(ax+y) contient l'intersection des domaines de conver-
gence de Z(z) et de Z(y).
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Exemples.

1. La transformée en z de z(n) = (3n + 2)U(n) est

21 1
X(z) = 3(1 e —1—21 —

2. Application aux signaux échantillonnés de signaux sinusoidaux : A Paide des formules
d’Euler, on montre que :

sin(w

#(n) = sin(wn)id(n) = X(2) = T—5

1 — cos(w)z™

x(n) = cos(wn)U(n) = X(z) =

S~— | —~ SN— | —r

1 —2cos(w)z~!

5.3.2 Décalage temporel (Retard)

Théoreme. Soient k € N et xy un signal causal discret. On note x le signal discret défini
pour tout n € Z par x(n) = xo(n — k). Alors

X(2) = 27 Xy(2).

Le domaine de convergence de X est le méme que celui de Xy.

Z_l

Exemple. z(n) =U(n - 1) = Z(z) = 1— o

5.3.3 Multiplication par a" (modulation)

Théoreme. Soient a # 0 et xy un signal causal discret. On note x le signal discret défini
pour tout n € Z par x(n) = a™xo(n). Alors

xer=5(3)

Le rayon de convergence R de X vérifie R = |a|r avec r est le rayon de convergence de
Xo.

Exemple. z(n) = 2"U(n) = 2"zy(n) avec :Bo( )=U(n
1
On sait que Xo(z) = - done X(z <g) =

( >—1 1—2z71
2
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5.3.4 Multiplication par n

Théoreme. Soit xo un signal causal discret. On note x le signal discret défini pour tout
n € Z par x(n) = nxo(n). Alors

X (2) = —2X{ (2)

avec X}, (z) = L% (2).

Le rayon de convergence de X est le méme que le rayon de convergence de Xj.

Exemple. z(n) = nld(n) = nxy(n) avec xo(n) = U(n).

On sait que Xy(z) = donc X(z) = —2X( (2) = —2z x =

1—271

5.3.5 Décalage temporel (avance)

Théoreme. Soit xoy un signal causal discret. On note x le signal discret défini pour tout
n € Z par x(n) = xo(n + 1)U(n). Alors

X (z) = 2(Xo(z) — 20(0)).
Par récurrence on a Vk € N*, si z(n) = xo(n + k)U(n), alors
k-1
X(z) = 2" (XO(Z) - Zxo(p)z_p>

Le domaine de convergence de X est le méme que celui de Xg.

Ce dernier résultat sera surtout utilisé dans la derniere partie de ce chapitre : résolution
d’équations aux différences.

5.3.6 Convolution discrete

Définition. Soient a(n) et b(n) deux signaux discrets causaux. On appelle produit de
convolution (ou produit de Cauchy) le signal discret causal a x b défini par

aﬂMQz(E:M@an—@>Um)

k=0
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Exemple. On note a(n) =U(n) et b(n) = nld(n), on a alors pour n > 0 :

axbn) = Y a(k)xb(n—k)

n(n+1)

Donc a * b(n) = 5

Un).

Théoreme. Soient a(n) et b(n) deur signaux discrets causauz de transformées en Z :
A(z) et B(z). La transformée en Z du produit de convolution a*b est A(z) x B(z).

Exemple. On note a(n) =U(n) et b(n) = nl(n). On sait que A(z) = 1 ! — et

—z
-1
z
BE =gy
-1

On a donc la transformée en Z de a x b(n) = WU@) X (2) = ﬁ

-z

Remarque.
— Comme en continu, le produit de convolution discret est commutatif.

— On obtient un résultat en tout point similaire a celui de la transformée de Laplace du
produit de convolution de deux fonctions causales.

— Ce résultat va nous permettre de déterminer la transformée en Z inverse de certaines
transformées.

5.4 Transformée en Z inverse

But : Connaissant X (z), on souhaite trouver un signal causal discret z(n) tel que X soit sa
transformée en Z.

Il existe une formule permettant de déterminer le signal z(n) connaissant X (z) mais le calcul
fait appel a un calcul intégrale le long d’un chemin complexe...

Nous allons préférer utiliser la méme méthode que pour déterminer la transformée de Laplace
inverse : par identification.
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Exemple. Soit la fonction X (z) = . Déterminons le signal z(n) dont X est la

z
(z—=1)(z+2)
transformée en Z :

X(z) = zx

= z —_
z—1 z+42
1 z 1
e — X — — X
3 z—1 3 z+42
1 1 1 1
e — X — — X
3 1—2z1 3 1+2z1

On reconnait alors la transformée en Z du signal

o(n) = SU(n) — 3(~2)U(n)

5.5 Application aux suites récurrentes
On considere la suite (z,,) définie par une relation de récurrence. Par exemple :

Tpt2 = Tpt1 + Tn
z(0) =1
z(1)=1

Nous souhaitons obtenir une expression de x,, en fonction de n. Nous allons utiliser la méme
téchnique que lorsqu’on résolvait des équations différentielles a l'aide de la transformée de
Laplace (d’ailleurs, la recherche de z,, est parfois appelé « équation aux différences »).

Méthode :
— On considere la suite comme un signal causal discret
— On applique la transformée en Z a I’équation de récurrence.
— On utilise la propriété de I'avance.
— On obtient la transformée de x
— On détermine z,, en passant a la transformée inverse.

Remarque. La relation de récurrence définie dans ’exemple ci-dessus est la définition de la
suite de Fibonacci.
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Chapitre 6

Equations différentielles linéaires du second
ordre

Définition. On appelle équation différentielle du second ordre a coefficients constants :

ay”(t) + by () + cy(t) = f(2) (6.1)

avec
e a € R* est une constante donnée,

e b et ¢ sont des réels donnés,

e f: I CR — R est une fonction donnée appelée second membre de I’équation
e y l'inconnue de 1’équation.

Exemple.
1. Le second membre de 1’équation différentielle y”(t) — 3y'(t) + 2y(t) =t — 3 est
ft)y=t—-3
2. Le second membre de ’équation différentielle 2y/(t) + 3y(t) = sin(3t) est f(t) = sin(3t)
3. Le second membre de 1'équation différentielle y”(t) — 2y(t) = e=* est f(t) = e~ ¥

Définition. On appelle solution particuliere de I’équation (6.1) une fonction, que l'on
peut noter y,(x), qui est solution de I'équation (6.1).

(c’est-a-dire qui vérifie ay, (t) + by, (t) + cy,(t) = f(1)).

Exemple.

1, 3
1. Vérifier que y,(t) = =t — — une solution particuliere de I'équation différentielle

y'(t) = 3y'(t) +2y(t) =t =3
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2
2. Vérifier que y,(t) = sm(3t) ~ e cos(3t) une solution particuliere de 1’équation

différentielle 2y/(t) + ( ) = sin(3t)
(

3. Vérifier que y, (¢ ¢ une solution particuliere de I'équation différentielle
y'(t) = 2y(t) = e "

6.1 Résolution de ’équation homogene associée

Définition. I’équation homogene associée a I’équation différentielle (6.1) est obtenue en
prenant le second membre égal a 0 :

ay"(t) + by’ (t) + cy(t) =0 (6.2)

Pour résoudre I’équation différentielle (6.2), on a besoin de définir le polynéme caractéristique

associé.

Définition. On appelle polynome caractéristique associé a I’équation homogene (6.2) le
polynome suivant :

ar® +br +c (6.3)

Les solutions de ’équation différentielle homogene (6.2) vont dépendre des solutions du
polynome caractéristique. Plus précisément, on a le théoreme suivant :

Théoreme. On considére I’équation différentielle homogéne (6.2)
ay”(t) + by (t) + cy(t) = 0

et son polynome caractéristique associé P(r) = ar? + br + c.

On note A le discriminant de P et r1 et ry les racines de P.

e 5i A >0 les solutions de (6.2) sont : {f(t ) Ae™t + Be™'; (A, B) € R?}.

e Si A = 0 les solutions de (6.2) sont : {f(t) = (At + B)e™: (A,B) € R*} ou
o ="y =T9.

e 5i A < 0 les solutions de (6.2) sont : {f(t) = e**(Acos(St) + Bsin(ft)); (A, B) € R?*}
ot « et B sont respectivement la partie réelle et la partie imaginaire de m1 (ou de ra,
sachant que ro =77 ).
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Exemple.

1. Déterminer ’ensemble des solutions de 1’équation différentielle (6.4) :

y"(t) —2y(t) =0 (6.4)

Le polynome caractéristique est r? — 2.
On calcule le discriminant du polynome caractéristique : A = 8.

Le polynome caractéristique admet donc deux racines distinctes : r| = V2 et ro = —1/2.
D’apres le théoreme précédent, I'ensemble des solutions de 'équation différenrielle (6.4)
est

&y:{t—LMN%+Z%‘ﬁW@&B)ERﬂu

2. Déterminer ’ensemble des solutions de I’équation différentielle (6.5) :

y'(t) = 2y'() + y(t) = 0 (6.5)

Le polynome caractéristique est r2 — 2r + 1.

On calcule le discriminant du polynome caractéristique : A = 0.

Le polynome caractéristique admet donc une racine double : ry = 1.

D’apres le théoreme précédent, I'ensemble des solutions de 'équation différenrielle (6.4)
est

Sy = {t — (A+ Bt)e'/(A, B) € R*}.

3. Déterminer I’ensemble des solutions de 1'équation différentielle (6.6) :
y'(t) +2y'() +2y(t) = 0 (6.6)

Le polyndme caractéristique est 72 + 2r + 2.

On calcule le discriminant du polynome caractéristique : A = —4 < 0, donc les solutions
du polynoéme caractéristique sont 71 = —1 41 et ro = —1 — 4.

On pose donc o = Re(ry) = =1 et = Im(r;) = 1.

D’apres le théoreme précédent, I’ensemble des solutions de 'équation différenrielle (6.4)
est

Sy = {t — e "(Acos(t) + Bsin(t))/(A, B) € R*}.
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6.2 Résolution de I’équation avec second membre

6.2.1 Ensemble des solutions

Théoreme. Soit y, une solution particuliére de l’équation (6.1). Alors, les solutions de
Iéquation (6.1) sont toutes de la forme :

y(t) = yp(t) + yn(?)

avec yp, € Sy une solution de ’équation homogeéne.

Remarque.
Cela signifie que 1'on obtient toutes les solutions de 1’équation (6.1) en sommant les solutions
de I’équation homogene associée (6.2) et une solution particuliere de ’équation (6.1).

Exemple.
On veut déterminer ’ensemble des solutions de ’équation différentielle :

y'(t) —2y(t) = e (6.7)

On a vu dans L’exemple précedent que I’ensemble des solutions de 1’équations homogene
associée est :
SH:{LAAW%+BaﬁWMJ%eR%.

1
On a aussi vu au début du chapitre qu'une solution particuliere est ﬂ6_4t‘

On en déduit que I'ensemble des solutions de ’équation différentielle (6.7) est

1
S:{p+ﬂ6“+A&@+B€ﬂWMJﬂeW}

6.2.2 Recherche d’une solution particuliere

Comment trouver une solution particuliere ? On recherche une solution particuliere en
s’inspirant de la forme du second membre.

e Cas 1:Si f(t) = a € R (autrement dit, si f est une constante), alors on recherche une
solution particuliere sous la forme d'une constante (sauf cas particulier).

Exemple.

On considere ’équation différentielle y”(t) — 3y/(t) + 2y(t) = —3.

On recherche une solution particuliere sous la forme d’une constante : y,(t) = k avec
k € R a déterminer.
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On dérive 2 fois : y,(t) = 0 et y, (t) = 0, puis on remplace dans I'’équation : 2k = —3.
Par identification : k = —3.
Donc la fonction y,(t) = —% est une solution particuliere de I’équation

y" — 3y + 2y = —3.

Cas particulier : Si y,(t) = k ne fonctionne pas (c’est parce que le second membre est
solution de I'équation homogene), alors on pose y,(t) = kt ou y,(t) = kt*.

e Cas 2:Si f(t) = P(t) est un polynome et que ¢ # 0, alors on recherche une solution
particuliere sous la forme d’un polynéme de méme degré que P (sauf cas particulier).

Exemple.

On considere I'équation différentielle y”(t) — 3y’ (t) + 2y(t) =t — 3.

On recherche une solution particuliere sous la forme d’un polynome de degré 1 :
yp(t) = at + b avec a € R et b € R deux constantes a déterminer.

On dérive 2 fois : y,(t) = a et y, (t) = 0, puis on remplace dans I'équation :
0—3a+2(at+b) =t — 3.

Par identification : 2a = 1 et 2b — 3a = —3.

1
D — —etb=—C.
onc a 5 € 1

1, 3
Donc la fonction y,(t) = =t — 1 est une solution particuliere de I’équation
y'(t) = 3y'(t) +2y(t) = t = 3.

Cas particulier : Si un polynéome de méme degré ne fonctionne pas (c’est parce que le
second membre est solution de I’équation homogene), alors on augmente le degré du
polynome de 1 ou 2.

e Cas 3 :Si f(t) = e™ avec m € R, on recherche une solution particuliere sous la forme :
at?’e™ s f(t) et tf(t) sont solutions de I’équation homogene associée
yp(t) = q ate™  si f(t) (et pas tf(t)) est solution de I'équation homogene associée

mt

ae sinon

Exemple.

On cherche une solution particuliere de (E) 2y"(t) +v'(t) — y(t) = €.

On cherche une solution particuliere sous la forme y,(t) = ke*, avec k € R une
constante & déterminer. On dérive y, deux fois et on remplace les fonctions dans (E) :

200 () + o (t) —yp(t) = € & 2 x dke® + 2ke® — ke™ = ™
& ke =¥
&S 9%k =1

1
Donc la fonction y,(t) = §e2t est une solution particuliere de (FE).
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e Cas 4:Si f(t) = acos(wt) ou si f(t) = fsin(wt) avec w, o et [§ trois constantes réelles.
On recherche une solution particuliere sous la forme y, () = a cos(wt) + bsin(wt) avec a
et b deux constantes a déterminer (sauf cas particulier).

Exemple.
On considere ’équation différentielle

y"(t) — 2y (t) + y(t) = cos(t) + 3sin(t) (6.8)

On recherche une solution particuliere sous la forme : y,(t) = A cos(t) + Bsin(t) avec A
et B deux constantes a déterminer.

On calcule y,, et y, @y, (t) = —Asin(t) + Bcos(t) et y, (t) = —Acos(t) — Bsin(t).

On remplace dans le membre de gauche de (6.8) :

Y, (t) = 2y, (t) + yp(t) = 2Asin(t) — 2B cos(t).

On procede ensuite par identification : on veut que
2Asin(t) — 2B cos(t) = cos(t) + 3sin(t).

On en déduit que A = g et B = —5
3 1

Une solution particuliere de I’équation différentielle (6.8) est y,(t) = 3 cos(t) — 3 sin(¢)

Cas particulier : Si le second membre est également solution de ’équation différentielle
homogene, il faut chercher une solution particuliere sous la forme
Yp(t) = at cos(wt) + bt sin(wt) avec a et b deux constantes a déterminer.

Exemple.
Soit I’équation différentielle (£) :

y"(t) + 4y(t) = 4cos(2t) (F)

(a) Résoudre I’équation homogene associée a (E).

(b) Est-il possible de trouver une solution particuliere de (£) de la forme
yp(t) = Acos(2t) + Bsin(2t) ?

(c) Montrer que la fonction y(t) = ¢ sin(2t) est solution de (F).
Principe de superposition Le résultat suivant est utile pour rechercher une solution

particuliere d’une équation différentielle dont le second membre f(t) s’écrit comme la somme
de plusieurs fonctions.
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Théoreme. On considére une équation différentielle du second du type :

ay”(z) + by’ (z) + cy(z) = fi(z) + fa(@) (6.9)

avec fi, fo : I CR — R sont deux fonctions continues.

Soit y; une solution particuliére de ay”(x) +by'(x) +cy(x) = fi(x) et soit yo une solution
particuliére de ay”(x) + by'(x) + cy(x) = fo(x).

Alors y1 + y2 est une solution de (6.9).

6.3 Ajout d’une condition initiale

Nous allons voir que le fait d’imposer la valeur de la solution de I’équation différentielle (6.1)
et de sa dérivée en un point (par exemple imposer y(2) = 0 et 3/(2) = 1 ) permet d’obtenir
une unique solution a 1’équation différentielle.

Définition. On appelle condition initiale associée a une équation différentielle d’ordre 2
le fait d’imposer la valeur de la solution de ’équation différentielle et de sa dérivée en un
point. On impose a la solution des conditions supplémentaires :

{ y(to) = a
Y(to) = b

avec a et b deux constantes données.

Remarque.
Remarquons que 'on impose la valeur a y et ¢y’ au méme point t.

Exemple.
On s’intéresse au systeme différentiel suivant :

y'(t) —2y'(t) +y(t) = cos(t)+ 3sin(¢)
y(0) = 0
y(0) =0
1. Déterminons I'’ensemble des solutions de I’équation homogene associée

y'(t) —2y'(t) +y(t) = 0 (6.10)

On calcule le discriminant de ’équation caractéristique : A = 0. L’équation
caractéristique admet donc une racine double : xqg = 1. D’apres le cours, 'ensemble des
solutions de (6.10) est
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Sy = {t = (A+ Bt)e'/(A,B) e R*}.

2. Déterminons la valeur des constantes a et b pour que y(t) = acos(t) + bsin(t) soit
solution de I’équation différentielle :

y"(t) — 2y (t) + y(t) = cos(t) + 3sin(t) (6.11)

On calcule y' et y" :y'(t) = —asin(t) + beos(t) et y"(t) = —acos(t) — bsin(t).
On remplace dans le membre de droite de (6.11) :

y"(t) — 2y (t) + y(t) = —y(t) — 2¢/(t) + y(t) = 2asin(t) — 2bcos(t).
On veut que 2asin(t) — 2bcos(t) = cos(t) + 3sin(t). Par identification, on en déduit que
a=; etb= —3-

3. En en déduit I’ensemble des solutions de 1’équation différentielle (6.11).

S = {t — gcos(t) - %sin(t) + (A+ Bt)e'/(A,B) € [Rz} :

4. Déterminons la solution de I’équation (6.11) qui vérifie y(0) = 0 et y'(0) = 0.

D’apres la question 4., les solutions de (6.11) sont de la forme :

y(t) = %cos(t) — %sin(t) + (A + Bt)e".

Calculons vy’ :

1
y'(t) = —g sin(t) — 5 cos(t) + Ae' + B(e' +te').

Les conditions y(0) =0 et y'(0) = 0 conduisent au systéme suivant :

A+2 = 0
1 2
—5+A+B =0

3
On en déduit A = ~3 et B = 2. L’unique solution de de (6.11) vérifiant de plus

y(0) =0 et y/(0) = 0 est y(t) = <2t _ §) o Sinzﬁf) . 3c02s(t>_

2
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Remarque.
On obtient une unique solution car le fait d’imposer une condition initiale a la fonction
permet de fixer les constantes intervenant dans la forme générale des solutions.

On peut énoncer le théoreme général suivant :

Théoreme. Soit f : I C R — R une fonction continue, a € R, to € I, a € R et b € R
données. Le systeme
ay"(t) +by'(t) + cy(t) = [f(t)
y(to) = a
y(to) = b

admet une unique solution sur I.

6.4 Pour résumer

Méthode : Pour résoudre une équation différentielle linéaire d’ordre 2 (E) il suffit donc de

e Résoudre ’équation homogene associée (H),

e Trouver y, une solution particuliere de (E),

e Conclure que les solutions de (£) sont données par la somme des solutions de (H) et de y,,
e Déterminer la (ou les) constante(s) grace aux conditions initiales.

On peut également utiliser la transformée de Laplace.

Méthode :

e Appliquer la transformée de Laplace a 1’équation (E),

e Déterminer £, la transformée de Laplace de la solution y,

e Appliquer la transformée inverse pour en déduire I'expression de y.

Remarque. Pour cela, on utilise la propriété :

Ly (p) =pLys(p) — f(07)
On a également :

L (p) = pLs(p) — f'(07)
=p (pLys(p) — f(0T)) — f/(07)
=p’Ls(p) —pf(0T) — f'(0T)

Exemple.
y'+4y — by =e*U(t) (E)
y(0) =1, ¢'(0)=2
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On applique la transformée de Laplace. On obtient :
(E) = Ly(p) +4Ly(p) — 5Ly = L2y (p)

= (FPLy(0) —p—2) +4 (L, (p) — 1) — 5L, = —

p—2
1 p? +4p —11
:>£y(p)(p2—|—4p—5):m+p+6: p—2
2 2
p°+4p — 11 p°+4p — 11
=L = =
) = =5 =D -Dp+9)
1/7 1 —1/7
= L) = /

p—2 p—1 p+5

On reconnait la transformée de Laplace de :

y@)zz(%e%—+et—-?e_&)llﬁ)
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Chapitre 7

Transformeée de Fourier

7.1 Définitions

7.1.1 Introduction

On souhaite prolonger ce que I'on a vu dans les séries de Fourier aux cas des fonctions non
périodiques.

On va définir un opérateur F qui a un signal f associe une fonction notée F; (ou F(f) . Puis
on cherchera, comme pour les séries de Fourier et le théoreme de Dirichlet, des conditions
pour obtenir une « transformation inverse » permettant de reconstruire f a partir de F.

Dans la suite, et sauf mention contraire, les fonctions considérées seront :

— C' par morceaux
+00

— Absolument intégrable : / |f(t)|dt < 0.

—00

7.1.2 La transformée

Définition. La transformée de Fourier de f est la fonction définie pour tout s € R, et a
valeur dans C, par
+oo
Fi(s) :/ e~ 2Tt £(1)dt.

[e.e]

~

On notera aussi f(s), ou encore F(f)(s).

Remarques.
+oo

— JF existe car / |f(t)|dt < 0.

— 00
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— F est une fonction continue qui tend vers zéro quand s tend vers 'infini.

— A priori, Ff(s) € C; mais nous verrons par la suite que, sous certaines conditions, les
images de Fy sont des réels ou des imaginaires purs.

Démonstration. Pour montrer que F tend vers 0 a l'infini, il suffit de faire une intégration

par partie, possible car f est C!' par morceaux.
O

Définition. La courbe d’équation y(s) = |Fy(s)| (module de Fy) est appelée le spectre
d’amplitude de f

7.2 Exemples fondamentaux

7.2.1 Signal porte
Soit IT le signal définie par :

Sitel[—3;3), H(t)=1
Sit¢ -3 4], () =0
Alors, Fr(s) = sm:srs) si s # 0, et Fr(0) = 1.
II
A
G e—
0.5+
—-1.0 —-0.5 0.5 1.0

Remarque. La transformée de Fourier de la porte est une fonction de R dans R.

7.2.2 Signal triangulaire
Soit A le signal défini par :
Si0<t<l1, Alt)=—t+1

t)
Si —1<t<0, A()=t+1
Si |t >1, A(t)=0
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: 2
Alors Fy(s) = <51n(7rs)) sis# 0 et Fa(s) =1
s
A
A
1.0
0.5 1
15 10 05 05 10 15
—0.5 4

Remarque. La transformée de Fourier du triangle est une fonction de R dans R.

7.3 Propriétés

7.3.1 Parité

Théoreme.

1. Si f est une fonction réelle et paire, alors Fy est réelle et paire et

Fi(s) =2 o f(t) cos(2mst)dt
0

2. Si f est une fonction réelle et impaire, alors Fy est imaginaire pure et paire et

Fyls) = —2i - f(t) sin(2mst)dt.
0

0 400
Démonstration. 1. ]:f(s) :/ f(t)e_2”8tdt—|— f(t)e—2i7rstdt
oo 0

+o0 +o0

= f(—t)e* stdt + f(#)e 27 dt par changement de variable
O—i-oo ) +£o )
= f(t)e™stdt + f(t)e ®™tdt car f est paire
o 0
=2 f(t) cos(2mst)dt
0
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Exemple. On considere le « train d’onde » f défini par :
(t)site [ T W]
cos(t) si —— =
7t = 22
0 sinon

Comme f est paire, on a
™

Fr(s) =2 /02 cos(t) cos(2mst)dt = /og cos((2ms + 1)t) + cos((2ms — 1)t)dt

sin ((27?5 +1) g) sin <(27rs —1) E) |

2
2rs + 1 2rs — 1

soit Fp(s) =

7.3.2 Opérations sur les fonctions

Théoréme. Soient f et g deux fonctions C* par morceauz et de module intégrable.

1. La transformée de Fourier est linéaire :
Fring = Fr+ Ay
2. Dilatation : Soit a un réel non nul. On pose,
Vi € R, g(t) = f(at).

Alors, pour tout réel s, on a :

Fy(s) = i.7-"f <f) .

jal” " \a

3. Formule du retard :
Soit a un réel (positif pour un retard...). On pose,

VieR, g(t) = f(t—a).
Alors, pour tout réel s, on a :
Fy(s) = e Fy(s).

(On obtient une modulation fréquentielle).

4. Transformée d’une dérivée :
Si f est continue, et si f' € L', alors on a :

Fp(s) = 2imsFy(s)
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Exemple.

1. Soit f(z) =1I (g), alors Fj(s) = ,Sin(27s) _ sin(27s)

21s s

f

0-5

-1.0 -0.5 0.5 1.0

2. Soit f(z) =1I(z —0,5). Alors, Fy(s) = e_”s%.

3. Grace a la transformée d’une dérivée, on peut retrouver la transformée de la fonction
triangle a I’aide de celle de la fonction porte.

Théoréme (admis). Vs € R Fireg(s) = Fp(s) x Fy(s).

Remarque.
La transformée de Fourier d'un produit de convolution est donc le produit (classique) des

transformées.

7.4 Formule d’inversion et applications

Définition. Soit F' une fonction C! par morceaux et absolument intégrable. La transfor-
mée de Fourier inverse de I est la fonction, notée F', définie pour tout s € R par

+oo
Folt) = / ¥t P (s)ds.

o
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On admettra le théoreme suivant :

Théoréme (Formule d’inversion). Si f est C' par morceaux et absolument intégrable dont
la transformée de Fourier est notée f alors

F3A(0) = 57 + £0))

Si de plus f est continue, alors,

Exemple (Applications).
On a pu observer que Fpp X Frip = Fa, on en déduit que A = [T % 11.

Remarque.

+o00
On a donc vu que, pour une fonction continue, f(z) = f(t)e* ™ dt,

+too )
On remarque alors que f(—x) = f(t)e 2m@tdt = Fi(z).

Autrement dit :

Fr (1) = f(=1)

Et en particulier, si f est paire, alors :

Fr(t) = f(t)

7.5 Conservation de ’énergie, Identité de Parseval

Théoréme (Identité de Parseval). Soient f et g deux fonctions de carrés intégrables.
Alors

| o= [~ 77w
En particulier :

| sapa= [ 17
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Remarque.

— Ce résultat s’interprete par le fait que 1’énergie moyenne du signal temporel f est égale
a I’énergie moyenne du signal fréquentiel F5.
Autrement dit, la transformée de Fourier conserve 1’énergie.

— En mathématiques, on utilisera ce résultat pour calculer des intégrales. Il arrive en effet
que l'intégrale du carré de F; soit plus simple a calculer que I'intégrale du carré de f.
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Chapitre 8

Développements limités

8.1 Introduction

Le but de ce chapitre est d’approximer une fonction (quelconque) par un polynéme, au
voisinage de zéro. C’est-a-dire, trouver un polynome dont le comportement asymptotique
lorsque x tend vers zéro, est semblable au comportement de la fonction.

Exemple. Soit la fonction définie par f(x) = In(1 + x).
2

. : x
On trace les courbes représentatives de f et de Pi(x) =z, Py(z) == — 5 et
2 3
o
Pyx)=2——+ —":
2 3
A Py
2 P,
1 !
N~~~
. . - . . . — . >
~1.0 —0.5 0.5 1.0 1.5 20, 25
\\
~
A
44 \\
'l Py ‘\
K4 A
" -1 A
L) .
s .
s A
4
4 &
VA
4
4
4
,
‘ —2
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On observe que les courbes de P;, P, et P3 sont « proches » de la courbe de f au voisinage
de 0.

Remarque. On peut se poser plusieurs questions :
— Comment quantifier proprement le fait d’approximer une fonction par une autre?

— Comment trouver ces polynomes ?

8.2 Comparaison de fonctions

Définition. Soient f et g deux fonctions et soit a € RU {£oo}. On dit que f et g sont
x
équivalentes en a si et seulement si lim M =1.
z—a g(x)
On note alors f ~ g.

Exemple.
20 +1 2
—

Remarque.

— les fonctions f et g ne sont pas nécessairement définies en a.
— on utilise souvent la définition du nombre dérivé pour démontrer une équivalence :

Rappel : f'(a) = lim M.

— la notion d’équivle_;zce s’estapas stable par addition : f ~ g et h ~ | nimplique pas que
frh~g+l ' '
— la notion d’équivalence est stable par multiplication ou par passage au quotient.
Exemple.
1. sin(z) >

2. (1+:B)°‘—1r(\;ax.

Définition. Soient f et g deux fonctions et soit a € RU{zoo}. On dit que f est négligeable
x
devant g en a si et seulement si lim M =0.
z—a g(x)
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Exemple.
1. f(z) = 2° est négligeable devant g(z) = x> en 0.

2. f(z) = 2? est négligeable devant g(z) = 2° en +o0.

Définition. Dans tout le chapitre on note ¢ toute fonction qui tend vers 0 quand x tend
vers 0.

Définition. Soient f et g deux fonctions. Si f est négligeable devant g en zéro alors il
existe une fonction ¢ telle que f(z) = g(x)e(z).

Exemple. Soient n et m deux entiers tels que n > m. Alors 2" = 2¢(x).

8.3 Développements limités

8.3.1 Définition

Définition. On dit que f admet un développement limité au voisinage de xy a l'ordre
n € N si f s’écrit au voisinage de x( sous la forme :

f(x) =ag+ai(z — 20) + az(x —20)* + -+ an(x — 20)" + (v — 30) (2 — 0)
P(z) + (v — m9)"e(x — 20)

avec a; € Rpour i =0,...,n.
Le polynome P, est appelé partie principale du développement limité et (z—x)"e(x—x0)
est appelé le reste d’ordre n.
En particulier, pour xy = 0, le développement limité au voisinage de 0 a I'ordre n € N
s’écrit :

f(z) = ap + a1x + agx® + ... + ap2™ + 2" ()

ou g(x) = 0 quand =z — 0.

Remarque. On utilisera la notation DL, (o) pour désigner un développement limité au
voisinage de xy a 'ordre n € .

Exemple. Fondamental 1

1
On cherche le DL,(0) de f(x) = T
—x
1 <=
On sait que T ngzo x" pour tout = €] — 1;1[.
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Donc f admet pour développement limité en O :

=1l+z+2°+.. +2" +2"(2)

1—2

Théoreme. Formule de Taylor-Young Soit f une fonction n-fois dérivable en 0. Alors
f admet un DL, (0) donné par :

f(z) = f(0)+f(0)z+ f;(!o)x2+f(2!(0)x3+. : .+f(:!(0):c”+x"a(x) = kzi% f(:!(O)

r*+z"e(x)

Exemple. Fondamental 2

Soit la fonction f(x) = . On sait que pour tout k on a f¥)(z) = e* et donc f¥)(0) = 1. On
applique la formule de Taylor-Young et on obtient le développement limité a I'ordre n de
exponentielle :

¥ + 2"e(z)

=) =

1 1 1
ew:1+x+§x2+§x3+...+ax"—i—x”s(m):

k=0

Remarque. Cette formule permet aussi d’obtenir aisément les développements limités en 0
des fonctions cosinus et sinus. Nous allons les calculer par la suite grace aux propriétés
d’additions des développements limités.

8.3.2 Unicité

Théoreme. Soit f une fonction admettant un DL, (0). La partie principale de DL,(0)
est unique.

Remarque.

— Soit f une fonction paire admettant un DL, (0). La partie principale de son DL, (0) est
un polynéme pair.

— Soit f une fonction impaire admettant un DL, (0). La partie principale de son DL, (0)
est un polynome impair.
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8.4 OQOpérations sur les D.L.

Théoréme. Soient f et g deux fonctions dérivables n fois dont les DL, (0) sont notés :

f(z) = P(x) +a"(x)  g(x) = Qx) + 2"e()

1. Troncature : pour tout entier m inférieur a n, la fonction f admet un DL,,(0)
obtenu en tronquant le polynome P au degré m

2. Somme : pour tout réel a, la fonction f+ ag admet un DL, (0) donné par
f(z) +ag(z) = P(z) + aQ(z) + 2"(z)
3. Produit : la fonction f X g admet un DL,(0) donné par

f(x) x g(x) = R(x) + "¢ (x)

ou R est le polynome de degré au plus n obtenu en tronquant a [’ordre n le produit
P xqQ.

4. Composition : si g(x) — 0 quand x — 0, alors la fonction fog admet un DL,(0)
donné par

fog(x) = R(x) + z"e(x)

ou R est le polynome de degré au plus n obtenu en tronquant a [’ordre n le produit
PoqQ.

5. Dérivation : la fonction ' admet un DL, _1(0) donné par
f'(x) = P'(z) + 2" e(2)

6. Primitive : la fonction F, primitive de f, admet un DL, 1(0) donné par
F(z) = P(x) + 2"t'e()

ou P est la primitive de P telle que P(0) = F(0).

Remarque. La propriété de composition peut s’interpréter comme une propriété de
changement de variable. Dans un développement limité, il est possible de remplacer x par
n’importe quel polyndéme dont le terme constant est nul (ainsi la fonction g, qui est un
polynome, tend bien vers 0 lorsque = tend vers 0).
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Exemple. On détermine grace aux propriétés ci-dessus les DL, (0) des fonctions suivantes :

1 1

1. =
l+z 1—(—x)
1 (propriété de composition, on peut car —x — 0 quand x — 0). On obtient

, on remplace donc la variable x par —x dans ’exemple fondamental

1
1+z

=l-a+2> -2+ . . +(=1)"2" + 2"(z)

, par passage a la primitive (on notera que

1
2. In(1 t imitive d
n(l + ) est une primitive de T2

In(1 4 0) = 0 donc le terme constant du DL, (0) est nul) on obtient :

1 1 1 —1)m+t
1n(1+:L')::L'—ix'Q—l—g:L'?’—Zatlljt...—l—L

" + a"e(x)
3. In(1 —z) = In(1 + (—z)), on remplace donc la variable  par —x dans I'exemple
précédent (propriété de composition, on peut car —x — 0 quand x — 0). On obtient

1 1 1 1
In(l —z)=—x— 5:52 — gx?’ - Z:z4+...— Ea:"%—:z"e(x)

4. cos(z) = %
composition (on remplace = par iz et —iz dans le développement limité de la fonction
exponentielle), on obtient le DL a I'ordre 2n :

d’apres la formule d’Euler. On utilise les propriétés de somme et de

cos(z) =1— 5:62 + Ix‘l +...+ @n)] 2" + 2% ()

T 6—im
5. sin(x) = — d’apres la formule d’Euler. On utilise les propriétés de somme et de
i

composition (on remplace = par iz et —iz dans le développement limité de la fonction
exponentielle), on obtient le DL a l'ordre 2n + 1 :

1 1 -1"
sin(r) = o — 5:63 + 5x5 +.o 1t ﬁxzn“ + ¥ e(x)

Remarque.

— Lorsqu’on remplace x par —z, seuls les termes de degré impair changent de signe.

— Les exemples ci-dessus pourront étre utilisés sans avoir a les redémontrer (i.e. ils sont a
retenir).
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8.5 Applications
En physique, par exemple, il est courant de remplacer une expression par son développement
limité (lorsque la variable & vocation & étre petite et en prenant soin de choisir 'ordre du DL

tel que lerreur soit inférieure aux erreurs autorisées par le contexte).

En mathématiques on utilise les développements limités afin d’obtenir des informations sur le
comportement de la courbe représentative de f au voisinage de zéro.

8.5.1 Calcul de limites

Théoréme. Soit f une fonction admettant un DLy(0) : f(x) = a+e(x). On a alors

lim f(z) =a

z—0

Remarque. En pratique le développement limité a l'ordre 0 suffit, mais on rappelle que le
DL, s’obtient par troncature de tout DL, a l'ordre zéro.

Exemple.

1 sin(x) o &7 ze(x)
z—0 X z—0 xT
= lim1+e(x)
z—0

8.5.2 Equation de la tangente

Théoreme. Soit f une fonction admettant un DL,(0) : f(x) = a + bx + xe(x).
La droite d’équation y = a + bx est la tangente a la courbe de f en 0.

Remarque.

— En pratique le développement limité a ’ordre 1 suffit, mais on rappelle que le DL,
s’obtient par troncature de tout DL, a l'ordre 1.

— On peut obtenir la position relative de la tangente au voisinage de 0, en étudiant le
signe du premier terme non-nul, de degré strictement supérieur a 1, du DL de f.

— On peut généraliser le résultat précédent aux ordres supérieurs et obtenir les courbes
tangentes de degrés 2, 3, ...

75,76



Exemple.

Le DL3(0) de la fonction f(x) = sin(x) est

1
sin(z) =z — gx?’ + 2%e(z)

Donc I’équation de la tangente a la courbe de f en 0 a pour équation : y = x.

De plus, au voisinage de 0, on a : f(z) —x = —51’3 + 23¢(x).
Donc : '
e pour x < 0, f(z) —x > 0 et la courbe de f est au-dessus de sa tangente en 0;

e pour z > 0, f(x) —z < 0 et la courbe de f est en-dessous de sa tangente en 0.
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